Open Access

Complete genome sequence of Thioalkalivibrio sp. K90mix

  • Gerard Muyzer1, 2Email author,
  • Dimitry Y. Sorokin1, 3,
  • Konstantinos Mavromatis4,
  • Alla Lapidus4,
  • Brian Foster4,
  • Hui Sun4,
  • Natalia Ivanova4,
  • Amrita Pati4,
  • Patrik D’haeseleer5,
  • Tanja Woyke4 and
  • Nikos C. Kyrpides4
Standards in Genomic Sciences20115:5030341

DOI: 10.4056/sigs.2315092

Published: 31 December 2011

Abstract

Thioalkalivibrio sp. K90mix is an obligately chemolithoautotrophic, natronophilic sulfur-oxidizing bacterium (SOxB) belonging to the family Ectothiorhodospiraceae within the Gammaproteobacteria. The strain was isolated from a mixture of sediment samples obtained from different soda lakes located in the Kulunda Steppe (Altai, Russia) based on its extreme potassium carbonate tolerance as an enrichment method. Here we report the complete genome sequence of strain K90mix and its annotation. The genome was sequenced within the Joint Genome Institute Community Sequencing Program, because of its relevance to the sustainable removal of sulfide from wastewater and gas streams.

Keywords

natronophilic sulfide thiosulfate sulfur-oxidizing bacteria soda lakes

Introduction

Thioalkalivibrio sp. K90mix is an obligately chemolithoautotrophic SOxB using CO2 as a carbon source and reduced inorganic sulfur compounds as an energy source. It belongs to the genus Thioalkalivibrio. This genus represents a dominant SOxB type in soda lakes — extremely alkaline and saline habitats - and is the first example of an obligate chemolithoautotroph capable of growing in saturated sodium carbonate brines. It forms a monophyletic group within the family Ectothiorhodospiraceae of the Gammaproteobacteria. The genus currently includes nine validly published species [1] and around 70, yet uncharacterized strains that are extremely salt-tolerant and genetically different from the characterized isolates recovered from hypersaline soda lakes [24]. The members are slow growing obligate autotrophs, well adapted to hypersaline (up to salt saturation) and alkaline (up to pH 10.5) conditions. Members of the genus Thioalkalivibrio have versatile metabolic capabilities, including oxidation of reduced sulfur compounds [1,2], denitrification [5,6] and thiocyanate utilization [7,8].

Apart from playing an important role in the sulfur cycle of soda lakes, Thioalkalivibrio species also are being used for the sustainable removal of sulfide from wastewater and gas streams [9,10]. In this process hydrogen sulfide is absorbed to a high salt alkaline solution, which is subsequently transferred to a bioreactor in which Thioalkalivibrio spp. oxidize HS- to elemental sulfur. The produced biosulfur can then be used as a fertilizer or fungicide [9].

To get a comprehensive understanding of the molecular mechanism by which Thioalkalivibrio sp. K90mix oxidize sulfur compounds and adapts to extreme alkaline (up to pH 10.5) and hypersaline conditions (up to 4 M of Na+ or 3.6 M of K+) it is necessary to identify the genes that are involved in these adaptations. The most important issues in this are the mechanism of sulfide oxidation, carbon assimilation at high pH, and bioenergetic adaptation to high salt and high pH. Here we present a summary classification and a set of features for Thioalkalivibrio sp. K90mix together with the description of the genomic sequencing and annotation.

Classification and features

Because of limited solubility of sodium carbonates in the biodesulfurization process, we made a series of enrichment cultures with an increasing ratio of potassium to sodium carbonate (potassium carbonates have a 2–5 times higher solubility than sodium carbonates). Thioalkalivibrio sp. K90mix was isolated from a culture that was inoculated with a mixture of sediment samples from different hypersaline soda lakes and was grown at the maximal possible substitution of sodium for potassium, 3.6 M K+/0.4 M Na+ (90% substitution).

Thioalkalivibrio sp. K90mix has rod-shaped cells with a polar flagellum (Figure 1), that elongate at high concentrations of K+ (Figure 1b). The strain is obligately alkaliphilic with a pH optimum of 10 (Table 1). It can tolerate a salinity of 4.0 M total Na+, but has an optimum of 0.3 M, sulfide concentrations up to 1 mM and a temperature up to 40°C. It has a preference for carbonate and sulfate as counter-anions over chloride and, therefore must be called “natronophilic”, instead of “haloalkaliphilic”. It utilizes ammonia, nitrate and nitrite as a nitrogen source. On the basis of 16S rRNA gene sequencing the strain belongs to the genus Thioalkalivibrio within the Gammaproteobacteria with T. thiocyanoxidans and T. nitratis as the closest described species (Figure 2). Most of the yet undescribed Thioalkalivibrio isolates from hypersaline lakes of Siberia and Mongolia also belong to this core genetic cluster of the genus Thioalkalivibrio.
Figure 1.

Phase contrast micrographs of the cell morphology of Thioalkalivibrio sp. K90mix grown at pH 10 and 4 M Na+ (a), or 3.6 M K+/0.4 M Na+ (b).

Figure 2.

Phylogenetic tree based on 16S rRNA sequences showing the phylogenetic position of Thioalkalivibrio sp. K90mix. The sequence was aligned to sequences stored in the SILVA database using the SINA Webaligner [24]. Subsequently, the aligned sequences were imported into ARB [25], and a neighbor joining tree was constructed. Sequences of members from the Alphaproteobacteria were used as outgroup, but were pruned from the tree. The scale bar indicates 1% sequence difference.

Table 1.

Classification and general features of Thioalkalivibrio sp. K90mix according to the MIGS recommendations [11].

MIGS ID

Property

Term

Evidence code

 

Current classification

Domain Bacteria

TAS [12]

 

Phylum Proteobacteria

TAS [13]

 

Class Gammaproteobacteria

TAS [14,15]

 

Order Chromatiales

TAS [16]

 

Family Ectothiorhodospiraceae

TAS [17]

 

Genus Thioalkalivibrio

TAS [1821]

 

Species Thioalkalivibrio sp. K90mix

NAS

 

Gram stain

negative

TAS [2]

 

Cell shape

rod-shaped

TAS [2]

 

Motility

motile

TAS [2]

 

Sporulation

non-sporulating

TAS [2]

 

Temperature range

Mesophile; maximum at 41°C

TAS [2]

 

Optimum temperature

34°C

TAS [2]

MIGS-6.3

Salinity range

0.2–4.0 M Na+ (opt. 0.3 M)

TAS [2]

MIGS-22

Oxygen requirement

aerobic

TAS [2]

 

Carbon source

HCO3

TAS [2]

 

Energy source

Sulfide/polysulfide, thiosulfate, sulfur, sulfite

TAS [2]

MIGS-6

Habitat

soda lakes

TAS [2]

MIGS-15

Biotic relationship

free-living

TAS [2]

MIGS-14

Pathogenicity

none

NAS

 

Biosafety level

1

TAS [22]

 

Isolation

Soda lake sediments

TAS [4]

MIGS-4

Geographic location

Kulunda Steppe, Altai, Russia

TAS [4]

MIGS-5

Sample collection time

2005

NAS

MIGS-4.1

Latitude

51.41

TAS [23]

MIGS-4.2

Longitude

79.48

TAS [23]

MIGS-4.3

Depth

Not applicable

 

MIGS-4.4

Altitude

Sea level

NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Genome sequencing information

Genome project history

Strain K90mix was selected for sequencing in the 2007 Joint Genome Institute Community Sequencing Program, because of its relevance to bioremediation. A summary of the project information is presented in Table 2. The complete genome sequence was finished in February 2010. The GenBank accession numbers are NC_013889 and NC_013930 for the chromosome and plasmid, respectively. The genome project is listed in the Genome OnLine Database (GOLD) [26] as project Gc01217. Sequencing was carried out at the Joint Genome Institute (JGI) Finishing was done by JGI-Los Alamos National Laboratory (LANL) and initial automatic annotation by JGI-Oak Ridge National Laboratory (ORNL).
Table 2.

Genome sequencing project information

MIGS ID

Characteristic

Details

MIGS-28

Libraries used

6kb and 40kb Sanger and 454 standard libraries

MIGS-29

Sequencing platform

ABI-3730, 454 GS FLX Titanium

MIGS-31.2

Sequencing coverage

10.0× Sanger, 32.1× pyrosequence

MIGS-31

Finishing quality

Finished

 

Sequencing quality

Less than one error per 100 kb

MIGS-30

Assembler

Newbler, PGA

MIGS-32

Gene calling method

Prodigal, GenePRIMP

 

GenBank ID

NC_013889

 

GenBank date of release

February 21, 2010

 

GOLD ID

Gc01217

 

NCBI project ID

30759

 

IMG Taxon ID

646564584

MIGS-13

Source material identifier

Personal culture collection, Winogradsky Institute of Microbiology, Moscow

 

Project relevance

Bioremediation

Growth conditions and DNA isolation

Thioalkalivibrio sp. K90mix was grown with 40 mM thiosulfate as an energy source in standard sodium carbonate-bicarbonate medium at pH 10 and 2 M Na+ [2] at 35oC with shaking at 200 rpm. The cells were harvested by centrifugation and stored at minus 80°C for DNA extraction. Genomic DNA was obtained using phenol-chloroform-isoamylalcohol (PCI) extraction. The genomic DNA was extracted using PCI and precipitated with ethanol. The pellet was dried under vacuum and subsequently dissolved in water. The quality and quantity of the extracted DNA was evaluated using the DNA Mass Standard Kit provided by the JGI.

Genome sequencing and assembly

The genome of Thioalkalivibrio sp. K90mix was sequenced using a combination of Sanger and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [27]. Pyrosequencing reads were assembled using the Newbler assembler version 1.1.02.15 (Roche). Large Newbler contigs were broken into 3,292 overlapping fragments of 1,000 bp and entered into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler consensus q-scores with modifications to account for overlap redundancy and adjust inflated q-scores. A hybrid 454/Sanger assembly was made using the PGA assembler. Possible mis-assemblies were corrected and gaps between contigs were closed by editing in Consed, by custom primer walks from sub-clones or PCR products. A total of 181 Sanger finishing reads were produced to close gaps, to resolve repetitive regions, and to raise the quality of the finished sequence. Illumina reads were used to improve the final consensus quality using an in-house developed tool (the ‘Polisher’ [28]). The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Sanger and 454 sequencing platforms provided 42.1× coverage of the genome. The final assembly contains 28,443 Sanger reads (10.0×) and 419,015 pyrosequencing reads (32.1×).

Genome annotation

Genes were identified using Prodigal [29] as part of the Oak Ridge National Laboratory genome annotation pipeline followed by a round of manual curation using the JGI GenePRIMP pipeline [30]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro, databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes Expert Review (IMG-ER) platform [31].

Genome properties

The genome of strain K90mix consists of a circular chromosome with a size of 2.74 Mbp (Figure 3) and a linear plasmid of 240 Kbp. The G+C percentage determined from the genome sequence is 65.54%, which is similar to the value determined by thermal denaturation (65.8±0.5 mol%). There are 2942 genes of which 2888 are protein-coding genes and the remaining 54 are RNA genes. 33 pseudogenes were identified, constituting 1.12% of the total number of genes. The genome is smaller than that of “Thioalkalivibrio sulfidophilus” HL-EbGr7 [32], 2.98 Mbp versus 3.46 Mbp, but has a similar percentage of protein-coding genes (98.16% versus 98.06%). The properties and statistics of the genome are summarized in Table 3, and genes belonging to COG functional categories are listed in Table 4.
Figure 3.

Graphical circular map of the chromosome of Thioalkalivibrio sp. strain K90mix. From outside to the center: Genes on the forward strand (Colored by COG categories), Genes on the reverse strand (colored by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 3.

Genome statistics

Attribute

Value

% of Total

Genome size (bp)

2,985,056

100.00%

DNA coding region (bp)

2,673,521

89.56%

DNA G+C content (bp)

1,956,383

65.54%

Number of replicons

1

 

Extrachromosomal elements (plasmid)

1

 

Total genes

2,942

100.00%

RNA genes

54

1.84%

rRNA operons

3

0.10%

Protein-coding genes

2,888

98.16%

Pseudogenes

33

1.12%

Genes in paralog clusters

267

9.08%

Genes assigned to COGs

2,139

72.71%

Genes assigned Pfam domains

2,292

77.91%

Genes with signal peptides

934

31.75%

CRIPR repeats

2

 
Table 4.

Number of genes associated with the general COG functional categories.

Code

Value

%age

Description

J

156

6.57

Translation, ribosomal structure and biogenesis

A

1

.04

RNA processing and modification

K

86

3.62

Transcription

L

164

6.91

Replication, recombination and repair

B

2

0.08

Chromatin structure and dynamics

D

41

1.73

Cell cycle control, mitosis and meiosis

Y

0

0.0

Nuclear structure

V

35

1.47

Defense mechanisms

T

166

6.99

Signal transduction mechanisms

M

176

7.41

Cell wall/membrane biogenesis

N

94

3.96

Cell motility

Z

0

0.0

Cytoskeleton

W

0

0.0

Extracellular structures

U

97

4.09

Intracellular trafficking and secretion

O

110

4.63

Posttranslational modification, protein turnover, chaperones

C

146

6.15

Energy production and conversion

G

79

3.33

Carbohydrate transport and metabolism

E

155

6.53

Amino acid transport and metabolism

F

66

2.78

Nucleotide transport and metabolism

H

146

6.15

Coenzyme transport and metabolism

I

65

2.74

Lipid transport and metabolism

P

119

5.01

Inorganic ion transport and metabolism

Q

42

1.77

Secondary metabolites biosynthesis, transport and catabolism

R

240

10.11

General function prediction only

S

188

7.92

Function unknown

-

803

27.29

Not in COGs

Insights from the genome sequence

Autotrophic growth

As mentioned before, [32] autotrophic growth at extremely high pH is a problem, because inorganic carbon is mainly present as carbonate (with bicarbonate as a minor fraction) at pH values above 10. This would demand active transport of bicarbonate into the cell. We found a gene related to stbA encoding a Na+/HCO3 symporter in the marine cyanobacterium Synechocystis sp. strain PCC 6803 [33]. Figure 4 shows a phylogenetic tree of different sequences related to StbA and the hydrophobicity profiles of StbA of Synechocystis sp. PCC 6803 and Thioalkalivibrio sp. K90mix. In addition, we have found genes for the large (TK90_0858) and small subunit (TK90_0859) of RuBisCO form 1Ac, and for the synthesis of α-carboxysomes (TK90_0860–TK90_0866), including csoSCA encoding a carboxysome shell alpha-type carbonic anhydrase, which was also found in genomic analysis of “Thioalkalivibrio sulfidophilus” HL-EbGr7 [32].
Figure 4.

Phylogeny and hydropathy of StbA from different microorganisms. The blue boxes indicate sequences belonging to the cyanobacteria. The dots on the branches are bootstrap values between 50% and 75% (open dots) or between 75% and 100% (closed dots) The scale bar indicated 10% sequence difference. The sequence of Thioalkalivibrio sp. K90mix is indicated in bold. Hydropathy profiles were made for the StbA protein sequences of Synechocystis sp. PCC6803 and Thioalkalivibrio sp. K90mix to indicate transmembrane spanning domains.

Sulfur metabolism

Thioalkalivibrio sp. K90mix can oxidize sulfide/polysulfide, thiosulfate, sulfite (in vitro) and elemental sulfur to sulfate. Elemental sulfur is formed as an intermediate during sulfide and thiosulfate oxidation at oxygen limitation and near-neutral pH. Figure 5 shows a schematic overview of the different genes that are involved in the oxidation of sulfur compounds. The genome of Thioalkalivibrio sp. K90mix contains genes for flavocytochrome c/sulfide dehydrogenase (TK90_0236), which oxidizes sulfide to elemental sulfur. It contains an incomplete set of sox genes including soxYZ (TK90_0123 and TK90_0124), soxAX (TK90_0432 and TK90_0433) and two copies of soxB (TK90_0627 and TK90_1150), but is lacking soxCD, which would allow oxidizing the sulfane atom of thiosulfate to the state of elemental sulfur, but no further. However, it does not contain the reverse dissimilatory sulfite reduction pathway to oxidize sulfur to sulfite, which has been found in the genome of “Thioalkalivibrio sulfidophilus” HLEbGr7 [32]. Absence of dsr genes has also been found for the green sulfur bacterium Chloroherpeton thalassium that can oxidize sulfide to elemental sulfur, but subsequently can only oxidize the produced sulfur very slowly [34], probably due to the absence of dsr. Frigaard and Dahl [35] suggested that the presence of a RuBisCo-like protein (RLP) might be involved in sulfur oxidation [36]. Genes encoding for the RuBisCo-like protein were not found, nor were genes encoding sulfur dioxygenase or sulfur oxygenase-reductase, which can oxidize or disproportionate sulfur in several acidophilic bacteria and archaea [37]. However, we found a gene cluster encoding two sulfur transferases (rhd, TK90_0630; sirA, TK90_0631) and a heterodisulfide reductase complex (TK90_0632–TK90_0637) consisting of hdrA, hdrB, and hdrC (Figure 6). dsrE was missing in this cascade, but was present at 3 other places in the genome (TK_0511, TK_0639, TK90_1244).
Figure 5.

Schematic overview of the different genes that are involved in the oxidation of sulfur compounds, although the role of the Hdr complex has not been proven yet. The genes encoding the reverse dissimilatory sulfite reductase (dsr), which are present in the genome of Thioalkalivibrio sulfidophilus, are absent in the genome of Thioalkalivibrio sp. K90mix.

Figure 6.

Comparison of the hdr cluster of A. ferroooxidans ATCC 23270 (AF), Thioalkalivibrio sp. K90mix (K90) and Thioalkalivibrio sulfidophilus HL-EbGR7 (HL). The heterodisulfide reductase complex consists of the genes encoding HdrC1, HdrB1, HdrA, orf2, HdrC2 and HdrB2. The accessory proteins are Rhd, and TusA. DsrE was not found in this order, but was present at other places in the genome. The percentage of amino-acid similarity is indicated.

The Hdr complex plays a function in the energy metabolism of methanogens [38] and sulfate-reducing prokaryotes [39]. In methanogens, the enzyme complex catalyzes the reversible reduction of the disulfide (CoM-S-S-CoB) of the two methanogenic thiol-coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH); in sulfate reducing microorganisms the substrate (X-S-S-X) is not known. Recently, the genes encoding the Hdr complex have also been detected in the genomes of the acidophilic sulfur oxidizing bacteria Acidithiobacillus ferrooxidans [40] and Acidithiobacillus caldus [41]. Quantrini and co-workers [40] hypothesized that Hdr, like the dissimilatory sulfite reductase (dsr), is working in reverse, whereby sulfur (i.e., sulfane atom) is oxidized to sulfite, and electrons are donated to the quinone pool. Although the role of the Hdr complex in the sulfur metabolism still has to be confirmed by expression analysis, Hdr genes have not yet been detected in the genomes of the neutrophilic chemolithotrophic sulfur-oxidizing bacteria Thiomicrospira crunogena and Thiobacillus denitrificans or of phototrophic sulfur-oxidizing bacteria Allochromatium vinosum and Halorhodospira halophila. The absence of a reverse dsr pathway in Thioalkalivibrio sp. K90mix might be the reason why it can only tolerate sulfide concentrations up to 1 mM. Sulfite can be oxidized further to sulfate, either directly by sulfite dehydrogenase (sorA; TK90_0686) or indirectly via adenosine-5’-phosphosulfate (APS) by APS reductase encoded by aprBA (TK90_0064 and TK90_0065) and ATP sulfurylase encoded by sat (TK90_0062) [42]. All these genes are present in the investigated genome.

Energy metabolism and pH homeostasis

At this time, it is not clear how Thioalkalivibrio sp. K90mix can withstand the harsh conditions of high pH and salinity. The difference between the pH of the environment (pH 10) and the pH in the cell (pH 8) causes a reversed ΔpH and consequently lowers the proton motive force (PMF). Therefore, Thioalkalivibrio requires a special molecular mechanisms to obtain enough energy for growth. It certainly needs this energy, because the production of osmolytes, to withstand the high concentrations of salts, costs 55 molecules of ATP for one molecule of glycine betaine, and 110 molecules of ATP for 1 molecule of sucrose [43]. In addition, the chemolithoautotrophic life style of CO2 fixation is energetically very expensive. The redox potential of the substrate couple S°/HS- (−260 mV) is more positive that the potential of NAD+/NADH (-340 mV) and therefore the direct reduction of NAD+ in order to supply reducing equivalents for CO2 fixation is not possible. Reverse electron transport is necessary in order to produce enough NADH, necessary for CO2 fixation, which costs extra energy. In addition, because of the large pH gradient over the cell membrane Thioalkalivibrio needs special mechanisms to keep the intracellular pH around neutral (pH homeostasis), which again is an energy requiring process.

The genome has revealed genes encoding similar proteins as those found for “Thioalkalivibrio sulfidophilus” HL-EbGr7 [32]. We found genes for a proton-driven F0F1-type ATP synthase (i.e., subunit A TK90_2593, B TK90_2591, and C TK90_2592of the F0 subcomplex, and subunit alpha (TK90_2589), beta (TK90_2587), gamma (TK90_2588), delta (TK90_2590), and epsilon (TK90_2586) of the F1 subcomplex), genes encoding the proton-translocating NADH dehydrogenase (nuoABCDEFGHIJKLMN) (TK90_0708 to TK90_0721), as well as the genes for a putative primary sodium pump Rnf [44] (rnfABCDGE) (TK90_1790 to TK90_1795). In addition, we found several genes encoding different secondary sodium-dependent pumps, such as the Na+/H+ antiporters NhaP (TK90_1831) and Mrp (mnhA-G) (TK90_0748 to TK90_0752), which according to Padan et al. [45] both play an essential role in alkaline pH homeostasis. In addition, we found genes encoding transporters belonging to the SulP family (TK90_0019, TK90_0897, TK90_0985). Transporters of this group could be involved in the low affinity, but high flux of bicarbonate uptake [46]. In addition, genes encoding the sodium-depending flagellar motor PomA/B (TK90_1180 and TK90_1181) are also present in the genome (see below for more details). As Thioalkalivibrio sp. K90mix can stand high concentrations of potassium, we also searched for K+-transporters and found genes encoding the following transporters: TrkA-C (TK90_0502), TrkA-N (TK90_2266) and TrkH (TK90_2267) that are part of the potassium uptake system [47].

Chemotaxis and motility

We found different genes encoding methyl-accepting chemotaxis sensory transducers (TK90_0580, TK90_0949, TK90_1402, TK90_2562, TK90_2397) that are involved in chemotaxis. One of these genes, Aer (TK90_0580), encodes a redox sensor involved in aerotaxis. In E. coli, Aer regulates the motility behavior in gradients of oxygen, redox potential and certain nutrients by interacting with the CheA-CheW complex. We found genes encoding several different proteins of this complex, CheA (TK90_1178), CheW (TK90_1183 and TK90_1184), CheY (TK90_1176), CheZ (TK90_1177), CheB (TK90_1179), CheV (TK90_0924) and CheR (TK90_0925). Chemotaxis consists of a complex cascade of different reactions: the redox sensor Aer senses a difference in redox potential induced by a change in the environmental oxygen concentration, which leads to the autophosphorylation of the histidine protein kinase CheA. CheA phosphorylates CheY, which will switch on the flagellar motor (see [48] for a detailed overview). CheW acts as an adaptor protein, while CheB, CheR, CheZ, and CheV are involved in feedback regulation.

Thioalkalivibrio sp. K90mix has all the genes that are indispensable for the production of flagellar proteins (FlgA, TK90_0923; FlgB, TK90_0926; FlgC, TK90_0927; FlgD, TK90_0928; FlgE, TK90_0929; FlgF, TK90_0930; FlgG, TK90_0931; FlgH, TK90_0932; FlgI, TK90_0933; FlgK, TK90_0935; FlgL, TK90_0936; FlgM, TK90_0922; FlgN, TK90_0921; FliC, TK90_1400, 1448, 1450; FliD, TK90_1447; FliE, TK90_1157; FliF, TK90_1158; FliG, TK90_1159; FliH, TK90_1160; FliI, TK90_1161; FliJ, TK90_1162; FliK, TK90_1163; FliM, TK90_1165; FliN, TK90_1166; FliO, TK90_1167; FliP, TK90_1168; FliQ, TK90_1169; FliR, TK90_1170; FliS, TK90_1446; FlhA, TK90_1172; FlhB, TK90_1171; see Table 1 in [49]). Phylogenetic analysis of sequences encoding different flagellar motors showed, with significant bootstrap values, genes encoding both proton-driven motors (TK90_0578, TK90_0577) related to E. coli MotA and MotB, as well as sodium-driven motors (TK90_1180, TK1181) related to Vibrio cholera PomA and PomB and Bacillus subtilis MotP and MotS (Figure 7). The results also show the presence of proton- and sodium-driven flagellar motors in the Ectothiorhodospiraceae, “Thioalkalivibrio sulfidophilus”, Halorhodospira halophila, and Alkalilimnicola ehrlichei, as well as in Achromatium vinosum, Acidithiobacillus caldus, Vibrio alginolyticus and Vibrio parahaemolyticus. Vibrio cholerae, Bacillus subtilis, B. halodurans, and Nitrococcus mobilis only have sodium-driven flagellar motors. Grouping of the proton-driven MotA and sodium-driven PomA has also been found by Krulwich et al. [50].
Figure 7.

Phylogenetic tree based on protein sequences of different flagellar motors. The sequences of the proton-driven flagellar motor MotAB from E. coli (ECDH10B_2031, ECDH10B_2030) and of the sodium-driven flagellar motor PomAB from V. cholerae (VC0892, VC0893) were used as reference proteins. Other proteins were selected after BLAST analysis. Subsequently, the selected protein sequences were aligned used Clustal W, and a neighbor joining tree was drawn using MEGA 5. Ac, Acidithiobacillus caldus ATCC 51756; Ae, Alkalilimnicola ehrlichei MLHE-1; Av, Allochromatium vinosum DSM 180; Bh, Bacillus halodurans C125; Bs, Bacillus subtilis strain 168; Ec, Escherichia coli DH10B; Hh, Halorhodospira halophila SL1; Nm, Nitrococcus mobilis NB-231; Ts, Thioalkalivibrio sulfidophilus HLEbGR7; Tv-K90, Thioalkalivibrio sp. K90mix; Va, Vibrio alginolyticus 12G01; Vc, Vibrio cholera O1; Vp, Vibrio parahaemolyticus RIMD2210633. The sequences of Thioalkalivibrio sp. K90mix are shown in bold type. The bar indicates 20% sequence difference. Numbers on the branches indicate percentage bootstrap values from 1000 iterations; only those values are shown that distinguish the different flagellar motors. The CheW sequence of Thioalkalivibrio sp. K90mix (TK90_1183) was used as an outgroup, but was pruned from the tree.

Transposases and environmental stress

Comparative analysis of the genomes of “Thioalkalivibrio sulfidophilus” HL-EbGr7 [32] and Thioalkalivibrio sp. K90mix showed a greater abundance of genes encoding different transposases (i.e., COG2801, COG3328, COG3547) in the latter. Transposases are enzymes that can move specific sequences of DNA, known as transposons or transposable elements, within the genome. Krulwich [51] found that the genome of the alkaliphilic bacterium Bacillus halodurans C125 contained 112 transposase genes as compared to 10 in the genome of its closest non-alkaliphilic relative B. subtilis. She suggested that this might be one of the mechanisms of alkaliphilic adaptation at the genome level. Although strains HL-EbGr7 and K90mix are both obligately alkaliphilic, they differ in salt tolerance. HL-EbGr7 can tolerate only low (up to 1.5 M) salt concentrations, while K90mix can tolerate high (up to 4 M) salinities.

Capy et al. [52] mentioned that environmental stress might stimulate transposition and consequently increase the genetic variability, which can be beneficial for the adaptation to novel environmental conditions. Foti et al. [4] used rep-PCR [53] to study the genetic diversity within the genus Thioalkalivibrio and found a relatively high diversity of 56 genotypes among 85 strains that were isolated from different soda lakes in Africa and Asia. In addition, preliminary enrichment experiments with potassium carbonate instead of sodium carbonate and higher concentrations of chloride selected populations of high salt-tolerant Thioalkalivibrio strains with different rep-PCR patterns (unpublished results), which might be an indication that transposition might occur more frequently in strains with a wide range of salt tolerance.

Oxidative stress

Reactive oxygen species (ROS), such as superoxides (O2-) and hydrogen peroxidase (H2O2), are naturally produced at hypersaline conditions and are deleterious to cellular macromolecules. To protect themselves from this oxidative stress, Thioalkalivibrio sp. K90mix and “Thioalkalivibrio sulfidophilus” HL-EbGr7 have several defense mechanisms. Superoxides are converted to oxygen and hydrogen peroxide by the enzyme superoxide dismutase (TK90_0947, Tgr7_2463), while hydrogen peroxide is converted to oxygen by hydroperoxidase (TK90_0947, Tgr7_1107) or to H2O by the cytochrome C peroxidase (TK90_0812, Tgr7_2739). In addition, Thioalkalivibrio sp. K90mix produces high concentrations of a specific membrane-bound yellow pigment named ‘natronochrome’ [54]. The pigment has a high degree of unsaturation and might also play a role in the protection against reactive oxygen species (ROS). The gene(s) responsible for the synthesis of this anti-oxidant remains to be identified.

Osmotic stress

Thioalkalivibrio sp. K90mix is an extremely salt-tolerant bacterium. It can grow in saturated sodium and potassium carbonate and sodium sulfate brines containing up to 4 M Na+/K+ but, in contrast to halo-alkaliphiles, it is inhibited by high concentrations of chloride. So, a more proper term for such an extremophile would be an “extreme natronophile”. To withstand these extreme salinities, it synthesizes glycine betaine as the main compatible solute; the genome contains the genes for glycine sarcosine N-methyltransferase (TK90_0179) and sarcosine dimethylglycine methyltransferase (TK90_0180). In addition, the genome contains the gene for sucrose phosphate synthase (TK90_2312) to produce sucrose as a compatible solute. Genes for ectoine were not found.

Declarations

Acknowledgements

This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Dimitry Sorokin was supported financially by RFBR grant 10-04-00152.

Authors’ Affiliations

(1)
Department of Biotechnology, Delft University of Technology
(2)
Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
(3)
Winogradsky Institute of Microbiology, Russian Academy of Sciences
(4)
Joint Genome Institute
(5)
Joint Bioenergy Institute

References

  1. Sorokin DY, Kuenen JG. Haloalkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Rev 2005; 29:685–702. PubMed doi:10.1016/j.femsre.2004.10.005View ArticlePubMedGoogle Scholar
  2. Sorokin DY, Banciu H, Robertson LA, Kuenen JG. Haloalkaliphilic sulfur-oxidizing bacteria. In: The Prokaryotes. Volume 2: Ecophysiology and Biochemistry 2006; pp. 969–984. Dworkin, M., Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (Ed’s). Springer, New York.View ArticleGoogle Scholar
  3. Sorokin DY, van den Bosch PLF, Abbas B, Janssen AJH, Muyzer G. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl Microbiol Biotechnol 2008; 80:965–975. PubMed doi:10.1007/s00253-008-1598-8View ArticlePubMedGoogle Scholar
  4. Foti M, Ma S, Sorokin DY, Rademaker JLW, Kuenen GJ, Muyzer G. Genetic diversity and bio-geography of haloalkaliphilic sulfur-oxidizing bacteria beloning to the genus Thioalkalivibrio. FEMS Microbiol Ecol 2006; 56:95–101. PubMed doi:10.1111/j.1574-6941.2006.00068.xView ArticlePubMedGoogle Scholar
  5. Sorokin DY, Kuenen JG, Jetten M. Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium “Thioalkalivibrio denitrificans”. Arch Microbiol 2001; 175:94–101. PubMed doi:10.1007/s002030000210View ArticlePubMedGoogle Scholar
  6. Sorokin DY, Antipov AN, Kuenen JG. Complete denitrification in a coculture of haloalkaliphilic sulfur-oxidizing bacteria from a soda lake. Arch Microbiol 2003; 180:127–133. PubMed doi:10.1007/s00203-003-0567-yView ArticlePubMedGoogle Scholar
  7. Sorokin DY, Tourova TP, Lysenko AM, Kuenen JG. Microbial thiocyanate utilization under high alkaline conditions. Appl Environ Microbiol 2001; 67:528–538. PubMed doi:10.1128/AEM.67.2.528-538.2001PubMed CentralView ArticlePubMedGoogle Scholar
  8. Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 2004; 150:2435–2442. PubMed doi:10.1099/mic.0.27015-0View ArticlePubMedGoogle Scholar
  9. Janssen AJ, Lens PN, Stams AJ, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, Van Zessen E, Luimes P, Buisman CJ. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 2009; 407:1333–1343. PubMed doi:10.1016/j.scitotenv.2008.09.054View ArticlePubMedGoogle Scholar
  10. van den Bosch PLF, Sorokin DY, Buisman CJN, Janssen AJH. The effect of pH on thiosulfate formation in a new biotechnological process for the removal of hydrogen sulfide from gas streams. Environ Sci Technol 2008; 42:2637–2642. PubMed doi:10.1021/es7024438View ArticlePubMedGoogle Scholar
  11. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541–547. PubMed doi:10.1038/nbt1360PubMed CentralView ArticlePubMedGoogle Scholar
  12. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579. PubMed doi:10.1073/pnas.87.12.4576PubMed CentralView ArticlePubMedGoogle Scholar
  13. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.View ArticleGoogle Scholar
  14. List Editor. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List No. 106. Int J Syst Evol Microbiol 2005; 55:2235–2238. doi:10.1099/ijs.0.64108-0
  15. Garrity GM, Bell JA, Lilburn T. Class III. Gamma-proteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.View ArticleGoogle Scholar
  16. Imhoff J. Order I. Chromatiales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1–3.View ArticleGoogle Scholar
  17. Imhoff JF. Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 1984; 34:338–339. doi:10.1099/00207713-34-3-338View ArticleGoogle Scholar
  18. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 2001; 51:565–580. PubMedView ArticlePubMedGoogle Scholar
  19. Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG. Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 2004; 8:325–334. PubMed doi:10.1007/s00792-004-0391-6PubMedGoogle Scholar
  20. List Editor. Notification that new names and new combinations have appeared in volume 51, part 2, of the IJSEM. Int J Syst Evol Microbiol 2001; 51:795–796. PubMed doi:10.1099/00207713-51-3-795
  21. De Vos P, Trüper HG, Tindall BJ. Judicial Commission of the International Committee on Systematics of Prokaryotes Xth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 28, 29 and 31 July and 1 August 2002, Paris, France. Int J Syst Evol Microbiol 2005; 55:525–532. doi:10.1099/ijs.0.63585-0View ArticleGoogle Scholar
  22. Classification of Bacteria and Archaea in risk groups. www.baua.de TRBA 466.
  23. http://www.iTouchMap.com
  24. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35:7188–7196. PubMed doi:10.1093/nar/gkm864PubMed CentralView ArticlePubMedGoogle Scholar
  25. Ludwig W, Strunk O, Westram R, Richter L, Meier H. Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371. PubMed doi:10.1093/nar/gkh293PubMed CentralView ArticlePubMedGoogle Scholar
  26. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes OnLine Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2010; 38:D346–D354. PubMed doi:10.1093/nar/gkp848PubMed CentralView ArticlePubMedGoogle Scholar
  27. DOE Joint Genome Institute. http://www.jgi.doe.gov/
  28. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.Google Scholar
  29. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119PubMed CentralView ArticlePubMedGoogle Scholar
  30. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455–457. PubMed doi:10.1038/nmeth.1457View ArticlePubMedGoogle Scholar
  31. Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen IM, Dubchak I, Anderson I, Lykidis A, Mavromatis K, et al. The integrated microbial genomes (IMG) system in 2007: data content and analysis tools extensions. Nucleic Acids Res 2008; 36:D528–D533. PubMed doi:10.1093/nar/gkm846PubMed CentralView ArticlePubMedGoogle Scholar
  32. Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, d’Haeseleer P, Woyke T, Kyrpides NC. Complete genome sequence of “Thioalkalivibrio sulfidophilus” HL-EbGR7. Stand Genomic Sci 2011; 4:23–35. PubMed doi:10.4056/sigs.1483693PubMed CentralView ArticlePubMedGoogle Scholar
  33. Shibata M, Katoh H, Sonoda M, Ohkawat H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. J Biol Chem 2002; 277:18658–18664. PubMed doi:10.1074/jbc.M112468200View ArticlePubMedGoogle Scholar
  34. Gibson J, Pfennig N, Waterbury JB. Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 1984; 138:96–101. PubMed doi:10.1007/BF00413007View ArticlePubMedGoogle Scholar
  35. Frigaard N-U, Dahl C. Sulfur metabolism in phototrophic sulfur bacteria. Advances in Microbial Physiology, 2009; 54: 1–3–200.Google Scholar
  36. Hanson TE, Tabita FR. A ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 2001; 98:4397–4402. PubMed doi:10.1073/pnas.081610398PubMed CentralView ArticlePubMedGoogle Scholar
  37. Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphillum spp. Microbiology 2003; 149:1699–1710. PubMed doi:10.1099/mic.0.26212-0View ArticlePubMedGoogle Scholar
  38. Hedderich R, Hamann N, Bennati M. Heterodi-sulfide reductase from methanogenic archaea: a new catalytic role of iron-sulfur cluster. Biol Chem 2005; 386:961–970. PubMed doi:10.1515/BC.2005.112View ArticlePubMedGoogle Scholar
  39. Mander GJ, Pierik AJ, Huber H, Hedderich R. Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus. Eur J Biochem 2004; 271:1106–1116. PubMed doi:10.1111/j.1432-1033.2004.04013.xView ArticlePubMedGoogle Scholar
  40. Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V. Extending the model for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 2009; 10:394. PubMed doi:10.1186/1471-2164-10-394PubMed CentralView ArticlePubMedGoogle Scholar
  41. Mangold S, Valdés J, Holmes DS, Dopson M. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol 2011; 2:1–13. PubMedView ArticleGoogle Scholar
  42. Kappler U. Bacterial sulfite-oxidizing enzymes. Biochim Biophys Acta 2011; 1807: 1–10.View ArticlePubMedGoogle Scholar
  43. Oren A. Thermodynamic limits to microbial life at high salt concentrations. [PubMed]. Environ Microbiol 2011; 11:1908–1923. PubMedView ArticleGoogle Scholar
  44. Biegel E, Müller V. Bacterial Na+-translocating ferridoxins: NAD+ oxidoreductase. Proc Natl Acad Sci USA 2010; 107:18138–18142. PubMed doi:10.1073/pnas.1010318107PubMed CentralView ArticlePubMedGoogle Scholar
  45. Padan E, Bibi E, Ito M, Krulwich TA. Alkaline pH homeostasis in bacteria: New insights. Biochim Biophys Acta 2005; 1717:67–88. PubMed doi:10.1016/j.bbamem.2005.09.010PubMed CentralView ArticlePubMedGoogle Scholar
  46. Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 2004; 101:18228–18233. PubMed doi:10.1073/pnas.0405211101PubMed CentralView ArticlePubMedGoogle Scholar
  47. Corratgé-Faillie C, Jabnoune M, Zimmerman S, Very AA, Fizames C, Sentenac H. Potassium and sodium transport in non-animals cells: the Trk/Ktr/HKT transporter system. Cell Mol Life Sci 2010; 67:2511–2532. PubMed doi:10.1007/s00018-010-0317-7View ArticlePubMedGoogle Scholar
  48. Porter SL, Wadhams GH, Armitage JP. Signal processing in complex Chemotaxis pathways. Nat Rev Microbiol 2011; 9:153–165. PubMed doi:10.1038/nrmicro2505View ArticlePubMedGoogle Scholar
  49. Pallen MJ, Matzke NJ. From the origin of species to the origin of bacterial flagella. Nat Rev Microbiol 2006; 4:784–790. PubMed doi:10.1038/nrmicro1493View ArticlePubMedGoogle Scholar
  50. Krulwich TA. Bioenergetic adaptations that support alkaliphily. 2007. In: Physiology and biochemistry of extremophiles. Eds. Gerday C, Glansdorff N. ASM Press, Washington, D.C. pp. 311–329.View ArticleGoogle Scholar
  51. Krulwich TA. Alkaliphily. 2003. In: Extremophiles (Life under extreme conditions) [Eds. Gerday C, Glansdorff N], in Encyclopedia of Life Support Systems (EOLSS). UNESCO-EOLSS.
  52. Capy P, Gasperi G, Biémont C, Bazin C. Stress and transposable element: co-evolution or useful parasites? Heredity 2000; 85:101–106. PubMed doi:10.1046/j.1365-2540.2000.00751.xView ArticlePubMedGoogle Scholar
  53. Versalovic J, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence based PCR 9rep-PCR). Meth Cell Mol Biol 1994; 5:25–40.Google Scholar
  54. Takaichi S, Maoka T, Akimoto N, Sorokin DY, Banciu H, Kuenen JG. Two novel yellow pigments natronochrome and chloronatronochrome from the natrono(alkali)philic sulfur-oxidizing bacterium Thialkalivibrio versutus ALJ 15. Tetrahedron Lett 2004; 45:8303–8305. doi:10.1016/j.tetlet.2004.09.073View ArticleGoogle Scholar

Copyright

© The Author(s) 2011