Open Access

Non-contiguous finished genome sequence and description of Brevibacillus massiliensis sp. nov.

  • Perrine Hugon1,
  • Ajay Kumar Mishra1,
  • Jean-Christophe Lagier1,
  • Thi Thien Nguyen1,
  • Carine Couderc1,
  • Didier Raoult1 and
  • Pierre-Edouard Fournier1Email author
Standards in Genomic Sciences20138:8010001

DOI: 10.4056/sigs.3466975

Published: 15 April 2013

Abstract

Brevibacillus massiliensis strain phRT sp. nov. is the type strain of B. massiliensis sp. nov., a new species within the genus Brevibacillus. This strain was isolated from the fecal flora of a woman suffering from morbid obesity. B. massiliensis is a Gram-positive aerobic rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,051,018 bp long genome (1 chromosome but no plasmid) contains 5,051 protein-coding and 84 RNA genes, and exhibits a G+C content of 53.1%.

Keywords

Brevibacillus massiliensis genome culturomics taxono-genomics

Introduction

Brevibacillus massiliensis strain phRT (= CSUR P177 = DSM 25447) is the type strain of B. massiliensis sp. nov. This bacterium is a Gram-positive, spore-forming, indole negative, aerobic and motile bacillus that was isolated from the stool of a 26-year-old woman suffering from morbid obesity. The strain was isolated as part of a study aiming at individually cultivating all species within human feces [1]. The current approach to classification of prokaryotes, often referred to as polyphasic taxonomy, relies on a combination of phenotypic and genotypic characteristics [2]. However, as more than 3,000 bacterial genomes have been sequenced to date [3] and the cost of genomic sequencing is decreasing, we recently proposed to integrate genomic information in the description of new bacterial species [415].

The genus Brevibacillus (Shilda et al. 1996) was created in 1996 by reclassification of 10 Bacillus species, on the basis of 16S rDNA gene sequence analysis [16]. To date, this genus is made of 18 species [17], including B. agri, B. brevis, B. centrosporus, B. choshinensis, B. parabrevis, B. reuszeri, B. formosus, B. borstelensis, B. laterosporus, and B. thermoruber [16], B. invocatus [18], B. limnophilus [19], B. levickii [20], B. ginsengisoli [21], B. panacihumi in [22], B. fluminis in [23], and B. nitrificans [24]. Members of the genus Brevibacillus are environmental bacteria and were mostly isolated from soil [22,25]. In addition, B. brevis and B. centrosporus were isolated from indoor dust in schools, day care centers for children and animal sheds [26], and fecal flora of children, respectively [27]. However, several Brevibacillus species are also frequently isolated from humans, notably in nosocomial infections, causing breast abscess, pneumonia [18], peritonitis [28] and endopthalmitis [29].

Here we present a summary classification and a set of features for B. massiliensis sp. nov. strain phRT (= CSUR P177 = DSM 25447), together with the description of the complete genomic sequencing and annotation. These characteristics support the circumscription of the B. massiliensis species.

Classification and features

A stool sample was collected from a 26-year-old woman living in Marseille (France). She suffered from morbid obesity and had a body mass index of 48.2 (118.8 kg, 1.57 meter). At the time of stool sample collection she was not under medication or on a diet. The patient gave an informed and signed consent. This study and the assent procedure were approved by the Ethics Committee of the Institut Fédératif de Recherche IFR48, Faculty of Medicine, Marseille, France (agreement 11-017). The fecal specimen was preserved at −80°C after collection. Strain phRT (Table 1) was isolated in 2011 by aerobic cultivation on M17 agar medium (Oxoid, Basingstoke, England).
Table 1.

Classification and general features of Brevibacillus massiliensis strain phRT according to the MIGS recommendations [42]

MIGS ID

Property

Term

Evidence codea

 

Current classification

Domain Bacteria

TAS [30]

 

Phylum Firmicutes

TAS [3133]

 

Class Bacilli

TAS [34,35]

 

Order Bacillales

TAS [36,37]

 

Family Paenibacillaceae

TAS [34,38]

 

Genus Brevibacillus

TAS [16]

 

Species Brevibacillus massiliensis

IDA

 

Type strain phRT

IDA

 

Gram stain

positive

IDA

 

Cell shape

rod

IDA

 

Motility

motile

IDA

 

Sporulation

sporulating

IDA

 

Temperature range

mesophile

IDA

 

Optimum temperature

37°C

IDA

MIGS-6.3

Salinity

growth in BHI medium + 5% NaCl

IDA

MIGS-22

Oxygen requirement

aerobic

IDA

 

Carbon source

unknown

 
 

Energy source

unknown

 

MIGS-6

Habitat

human gut

IDA

MIGS-15

Biotic relationship

free living

IDA

 

Pathogenicity

unknown

 
 

Biosafety level

2

 

MIGS-14

Isolation

human feces

 

MIGS-4

Geographic location

France

IDA

MIGS-5

Sample collection time

January 2011

IDA

MIGS-4.1

Latitude

43.296482

IDA

MIGS-4.2

Longitude

5.36978

IDA

MIGS-4.3

Depth

surface

IDA

MIGS-4.4

Altitude

0 m above sea level

IDA

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [39]. If the evidence is IDA, then the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.

This strain exhibited a nucleotide sequence similarity with Brevibacillus species ranging from 94% with B. centrosporus [18] to 96% with B. reuszeri, B. parabrevis, B. invocatus, B. brevis, B. borstelensis [18], B. panacihumi [22], B. levickii [20], (Figure 1). This latter value was lower than the 98.7% 16S rRNA gene sequence threshold recommended by Stackebrandt and Ebers to delineate a new species without carrying out DNA-DNA hybridization [40].
Figure 1.

Phylogenetic tree highlighting the position of Brevibacillus massiliensis strain phRT relative to other type strains within the Brevibacillus genus. GenBank accession numbers are indicated in parentheses. Sequences were aligned using CLUSTALW, and phylogenetic inferences obtained using the maximum-likelihood method within MEGA program. Numbers at the nodes are percentages of bootstrap values obtained by repeating the analysis 500 times to generate a majority consensus tree. Alicyclobacillus acidocaldarius was used as outgroup. The scale bar represents a 2% nucleotide sequence divergence.

Different growth temperatures (25, 30, 37, 45°C [Table 2]) were tested; no growth occurred at 25°C, growth occurred between 30 and 45°C, and optimal growth was observed at 37°C. Grey colonies were 0.8 mm to 1 mm in diameter on blood-enriched Columbia agar and Brain Heart Infusion (BHI) agar. Growth of the strain was tested under anaerobic and microaerophilic conditions using GENbag anaer and GENbag microaer systems, respectively (BioMerieux), and in the presence of air, with or without 5% CO2. Growth was obtained aerobically. A weak growth was observed with 5% CO2, but no growth occurred in microaerophilic and anaerobic conditions. Gram staining showed Gram-positive rods (Figure 2). The motility test was positive. Cell diameters ranged from 0.61 µm to 0.80 µm, with a mean diameter of 0.74 µm, and from 2.60µm to 7.30 µm long, with a mean length of 4.3µm in electron microscopy. Peritrichous flagellae were also observed (Figure 3).
Figure 2.

Gram staining of B. massiliensis strain phRT

Figure 3.

Transmission electron microscopy of B. massiliensis strain phRT, using a Morgani 268D (Philips) at an operating voltage of 60kV. The scale bar represents 1 µm.

Table 2.

Differential characteristics of B. massiliensis sp. nov strain ph1T, B. agri strain NRRL NRS-1219, B. laterosporus strain JCM 2496 and B. brevis NBRC 15304T.

Properties

B. massiliensis

B. agri

B. laterosporus

B. brevis

Cell diameter (µm)

0.74

0.75

na

0.50

Oxygen requirement

aerobic

aerobic

aerobic, facultative anaerobic

aerobic

Gram stain

+

+

var

+

Salt requirement

na

na

na

Motility

+

+

+

+

Endospore formation

na

+

+

+

Production of

    

Alkaline phosphatase

+

na

na

Acid phosphatase

+

na

na

Catalase

+

+

+

+

Oxidase

+

na

+

Nitrate reductase

na

+

Urease

na

α-galactosidase

na

na

β-galactosidase

na

na

β-glucuronidase

na

na

α-glucosidase

na

na

N-acetyl-β-glucosamidase

na

na

Indole

Esterase

w

na

na

+

Esterase lipase

w

na

na

+

Naphthyl-AS-BI-phosphohydrolase

+

na

na

+

Arginine arylamidase

na

na

na

Arginine dihydrolase

na

na

Glutamyl glutamic acid arylamidase

na

na

na

Phenylalanine arylamidase

na

na

na

Leucine arylamidase

w

na

na

Cystine arylamidase

+

na

na

Valine arylamidase

w

na

na

Glycine arylamidase

na

na

na

Histidine arylamidase

na

na

na

Serine arylamidase

na

na

na

Utilization of

    

D-mannose

na

na

Habitat

human gut

environment

environment

environment

Strain phRT exhibited catalase and oxidase activities. Using an API ZYM strip (BioMerieux, Marcy l’Etoile), positive reactions were obtained for alkaline phosphatase, cystine arylamidase, acid phosphatase and naphtol-AS-BI-phosphohydrolase. Weak reactions were obtained for esterase, esterase lipase, leucine arylamidase, valine arylamidase, and α-chymotrypsin. Using an API Coryne strip (BioMerieux), positive reactions were obtained for pyrazinamidase and alkaline phosphatase. No sugar fermentation was observed using API 50CH (Biomerieux).

B. massiliensis is susceptible to penicillin G, amoxicillin, amoxicillin + clavulanic acid, ceftriaxon, imipenem, erythromycin, doxycyclin, rifampicine, vancomycin, ciprofloxacin, gentamicin, nitrofurantoin and resistant to metronidazole and trimetoprim + sulfamethoxazole. By comparison with B. borstelensis, its phylogenetically-closest neighbor, B. massiliensis differed in fumarate, phenylacetate and glutamate activities [18]. By comparison with B. brevis, B. massiliensis differed in alkaline and acid phosphatase production, nitrate reductase, esterase, esterase lipase, leucine arylamidase, cystine arylamidase and valine arylamidase production. By comparison with B. agri, B. massiliensis differed in oxidase production.

Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) MS protein analysis was carried out as previously described [41]. Briefly, a pipette tip was used to pick an isolated bacterial colony from a culture agar plate and spread it as a thin film on a MTP 384 MALDI-TOF target plate (Bruker Daltonics, Germany). Twelve distinct deposits were done for strain phRT from twelve isolated colonies. Each smear was overlaid with 2µL of matrix solution (saturated solution of alpha-cyano-4-hydroxycinnamic acid) in 50% acetonitrile, 2.5% tri-fluoracetic acid, and allowed to dry for five minutes. Measurements were performed with a Microflex spectrometer (Bruker). Spectra were recorded in the positive linear mode for the mass range of 2,000 to 20,000 Da (parameter settings: ion source 1 (ISI), 20kV; IS2, 18.5 kV; lens, 7 kV). A spectrum was obtained after 675 shots at a variable laser power. The time of acquisition was between 30 seconds and 1 minute per spot. The twelve phRT spectra were imported into the MALDI BioTyper software (version 2.0, Bruker) and analyzed by standard pattern matching (with default parameter settings) against the main spectra of 3,769 bacteria, including spectra from nine validly published Brevibacillus species that were used as reference data in the BioTyper database (updated March 15th, 2012). The method of identification includes the m/z from 3,000 to 15,000 Da. For every spectrum, 100 peaks at most were taken into account and compared with the spectra in the database. A score enabled the presumptive identification and discrimination of the tested species from those in a database: a score ≥ 2 with a validated species enabled the identification at the species level; a score ≥ 1.7 but < 2 enabled the identification at the genus level; and a score < 1.7 did not enable any identification. For strain phRT, no significance score was obtained, thus suggesting that our isolate was not a member of a known species. We incremented our database with the spectrum from strain phRT (Figure 4). Finally, the gel view allows us to highlight the spectra differences with other of Brevibacillus genera members (Figure 5).
Figure 4.

Reference mass spectrum from B. massiliensis strain phRT. Spectra from 12 individual colonies were compared and a reference spectrum was generated.

Figure 5.

Gel view comparing Brevibacillus massiliensis phRT spectra with other members into Brevibacillus genera (Brevibacillus reuszeri, Brevibacillus parabrevis, Brevibacillus laterosporus, Brevibacillus formosus, Brevibacillus choshinensis, Brevibacillus centrosporus, Brevibacillus brevis, Brevibacillus borstelensis, Brevibacillus agri). The Gel View displays the raw spectra of all loaded spectrum files arranged in a pseudo-gel like look. The x-axis records the m/z value. The left y-axis displays the running spectrum number originating from subsequent spectra loading. The peak intensity is expressed by a Gray scale scheme code. The color bar and the right y-axis indicates the relation between the color a peak is displayed with and the peak intensity in arbitrary units.

Genome sequencing information

Genome project history

The organism was selected for sequencing on the basis of its phylogenetic position and 16S rRNA similarity to other members of the Brevibacillus genus, and is part of a study of the human digestive flora aiming at isolating all bacterial species within human feces. It was the fifth genome of a Brevibacillus species and the first genome of Brevibacillus massiliensis sp. nov. The Genbank accession number is CAGW00000000 and consists of 132 contigs. Table 3 shows the project information and its association with MIGS version 2.0 compliance [42].
Table 3.

Project information

MIGS ID

Property

Term

MIGS-31

Finishing quality

High-quality draft

MIGS-28

Libraries used

One 454 paired end 3-kb library

MIGS-29

Sequencing platforms

454 GS FLX Titanium

MIGS-31.2

Fold coverage

54.2×

MIGS-30

Assemblers

Newbler version 2.5.3

MIGS-32

Gene calling method

Prodigal

 

INSDC ID

PRJEA82077

 

Genbank ID

CAGW00000000

 

Genbank Date of Release

May 30, 2012

 

Project relevance

Study of the human gut microbiome

Growth conditions and DNA isolation

B. massiliensis sp. nov. strain phRT, (= CSUR P177 = DSM 25447), was grown aerobically on M17 agar medium at 37°C. Five petri dishes were spread and resuspended in 3×100µl of G2 buffer (EZ1 DNA Tissue kit, Qiagen). A first mechanical lysis was performed using glass powder on a Fastprep-24 device (Sample Preparation system, MP Biomedicals, USA) during 2×20 seconds. DNA was then treated with 2.5 µg/µL (30 minutes at 37°C) and extracted using a BioRobot EZ 1 Advanced XL (Qiagen). The DNA was then concentrated and purified on a Qiamp kit (Qiagen). The yield and the concentration was measured by the Quant-it Picogreen kit (Invitrogen) on the Genios_Tecan fluorometer at 36.8 ng/µl.

Genome sequencing and assembly

A 3kb paired-end sequencing strategy (Roche, Meylan, France) was used. Five µg of DNA was mechanically fragmented on the Hydroshear device (Digilab, Holliston, MA, USA) with an enrichment size at 3–4kb. The DNA fragmentation was visualized through an Agilent 2100 BioAnalyzer on a DNA labchip 7500 with an optimal size of 3.2 kb. The library was constructed according to the 454 GS FLX Titanium paired end protocol. Circularization and nebulization were performed and generated a pattern with an optimal at 555 bp. After PCR amplification through 17 cycles followed by double size selection, the single stranded paired-end library was then quantified on the Quant-it Ribogreen kit (Invitrogen) on the Genios_Tecan fluorometer at 21 pg/µL. The library concentration equivalence was calculated as 6.94e+07 molecules/µL. The library was stored at −20°C until further use.

The 3kb paired-end library was amplified in 9 emPCR reactions at 1cpb, and in 2 emPCRs at 0.5 cpb with the GS Titanium SV emPCR Kit (Lib-L) v2 (Roche).The yield of the 2 types of paired-end emPCR reactions was 7.8% and 11.2%, respectively, in the quality range of 5 to 20% expected from the Roche procedure. Both libraries were loaded onto GS Titanium PicoTiterPlates (PTP Kit 70×75, Roche) and pyrosequenced with the GS Titanium Sequencing Kit XLR70 and the GS FLX Titanium sequencer (Roche).The run was performed overnight and then analyzed on the cluster through the gsRunBrowser and Newbler assembler (Roche). A total of 969,014 passed filter wells were obtained and generated 274 Mb with a length average of 286 bp. The passed filter sequences were assembled using Newbler with 90% identity and 40bp as overlap. The final assembly identified 31 scaffolds and 129 contigs (>1,500 bp) and generated a genome size of 5.05Mb, which corresponds to a coverage of 54.2× coverage.

Genome annotation

Open Reading Frames (ORFs) were predicted using Prodigal [43] with default parameters but the predicted ORFs were excluded if they spanned a sequencing gap region. The predicted bacterial protein sequences were searched against the GenBank database [44] and the Clusters of Orthologous Groups (COG) databases using BLASTP. The tRNAScanSE tool [45] was used to find tRNA genes, whereas ribosomal RNAs were found by using RNAmmer [46] and BLASTN against the GenBank database. Lipoprotein signal peptides and numbers of transmembrane helices were predicted using SignalP [47] and TMHMM [48], respectively. ORFans were identified if their BLASTP E-value was lower than 1e-03 for alignment length greater than 80 amino acids. If alignment lengths were smaller than 80 amino acids, we used an E-value of 1e-05. Such parameter thresholds have already been used in previous works to define ORFans. To estimate the mean level of nucleotide sequence similarity at the genome level between B. massiliensis strain phRT, B. laterosporus strain LMG15441 (GenBank accession number AFRV00000000) and B. brevis strain NBRC100599 (GenBank accession number AP008955) and B. agri strain BAB-2500, we compared genomes two by two and determined the mean percentage of nucleotide sequence identity among orthologous ORFs using BLASTn. Orthologous genes were detected using the Proteinortho software [49].

Genome properties

The genome of B. massiliensis strain phRT is 5,051,018 bp long (1 chromosome but no plasmid) with a G + C content of 53.1% (Figure 6 and Table 4). Of the 5,135 predicted genes, 5,051 were protein-coding genes, and 84 were RNAs. Three rRNA genes (one 16S rRNA, one 23S rRNA and one 5S rRNA) and 81 predicted tRNA genes were identified in the genome. A total of 3,793 genes (73.86%) were assigned a putative function. Three hundred and seventy-eight genes were identified as ORFans (7.36%). The remaining genes were annotated as hypothetical proteins. The properties and the statistics of the genome are summarized in Table 4. The distribution of genes into COGs functional categories is presented in Table 5.
Figure 6.

Graphical circular map of the chromosome. From the outside in, the outer two circles shows open reading frames oriented in the forward (colored by COG categories) and reverse (colored by COG categories) direction, respectively. The third circle marks the rRNA gene operon (red) and tRNA genes (green). The fourth circle shows the G+C% content plot. The inner-most circle shows GC skew, purple indicating negative values whereas olive for positive values.

Table 4.

Nucleotide content and gene count levels of the genome

Attribute

Value

% of totala

Genome size (bp)

5,051,018

 

DNA coding region (bp)

4,481,706

88.72

DNA G+C content (bp)

2,682,091

53.10

Number of replicons

1

 

Extrachromosomal elements

0

 

Total genes

5,135

100

RNA genes

84

1.63

rRNA operons

1

 

Protein-coding genes

5,051

98.36

Genes with function prediction

4,198

81.75

Genes assigned to COGs

3,793

73.86

Genes with peptide signals

354

6.89

Genes with transmembrane helices

1,277

24.86

CRISPR repeats

0

 

a The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome

Table 5.

Number of genes associated with the 25 general COG functional categories

Code

Value

%agea

Description

J

165

3.27

Translation

A

0

0

RNA processing and modification

K

405

8.0

Transcription

L

176

3.48

Replication, recombination and repair

B

1

0.02

Chromatin structure and dynamics

D

33

065

Cell cycle control, mitosis and meiosis

Y

0

0

Nuclear structure

V

50

0.99

Defense mechanisms

T

233

4.61

Signal transduction mechanisms

M

181

3.58

Cell wall/membrane biogenesis

N

60

1.19

Cell motility

Z

0

0

Cytoskeleton

W

0

0

Extracellular structures

U

42

0.83

Intracellular trafficking and secretion

O

111

2.20

Posttranslational modification, protein turnover, chaperones

C

251

4.97

Energy production and conversion

G

327

6.47

Carbohydrate transport and metabolism

E

700

13.86

Amino acid transport and metabolism

F

88

1.74

Nucleotide transport and metabolism

H

159

3.15

Coenzyme transport and metabolism

I

171

3.39

Lipid transport and metabolism

P

317

6.28

Inorganic ion transport and metabolism

Q

150

2.97

Secondary metabolites biosynthesis, transport and catabolism

R

578

11.44

General function prediction only

S

319

6.32

Function unknown

-

1,258

24.91

Not in COGs

a The total is based on the total number of protein coding genes in the annotated genome.

Comparison with other Brevibacillus species genomes

Here, we compared the genome of B. massiliensis strain phRT with those of B. laterosporus strain LMG15441,B. brevis strain NBRC100599 and B. agri strain BAB-2500. The draft genome of B. massiliensis is smaller than those of B. laterosporus, B. agri and B. brevis (5.05, 5.14, 5.39 and 6.29 Mb, respectively). Brevibacillus massiliensis has a higher G+C content than Brevibacillus laterosporus and Brevibacillus brevis (53.10% vs 41.09% and 47.27% respectively) but smaller G+C content than Brevibacillus agri (53.10% vs 53.5%). B. massiliensis has a higher gene content than B. laterosporus (5,051 and 4,591, respectively) but lower than B. agri and B. brevis respectively (5.457 and 5.949 respectively). In addition, B. massiliensis shared 2,077, 2,500 and 2,453 orthologous genes with B. laterosporus, B. brevis and B. agri respectively. The average nucleotide sequence identity ranged from 67.17 to 78.81% among Brevibacillus species, and from 67.34 to 71.14% between B. massiliensis and other Brevibacillus species, thus confirming its new species status (Table 6).
Table 6.

The numbers of orthologous protein shared between genomes (above diagonal)

 

B. massiliensis

B. laterosporus

B. brevis

B. agri

B. massiliensis

5,051

2,077

2,500

2,453

B. laterosporus

67.34

4,591

2,403

2,356

B. brevis

69.36

68.38

5,949

2,779

B. agri

71.14

67.17

78.81

5,457

average percentage similarity of nucleotides corresponding to orthologous protein shared between genomes (below diagonal) and the numbers of proteins per genome (bold) [49].

Conclusion

On the basis of phenotypic, phylogenetic and genomic analyses, we formally propose the creation of Brevibacillus massiliensis sp. nov. which currently contains strain phRT as its sole member;. This bacterial strain was originally isolated in Marseille, France.

Description of Brevibacillus massiliensis sp. nov.

Brevibacillus massiliensis (ma.si.li.en’sis. L. gen. masc. n. massiliensis, pertaining to Massilia, the ancient Roman name for Marseille, France, where the type strain was isolated).

Colonies are grey and 0.8 mm to 1 mm in diameter on blood-enriched Columbia agar. Cells are rod-shaped with a mean diameter of 0.74 µm and a mean length of 4.3µm with electron microscopy. Optimal growth is achieved aerobically. Weak growth was observed when cultures were gown under a 5% CO2. No growth is observed in microaerophilic or anaerobic conditions. Growth occurs between 30 and 45°C, with optimal growth occurring at 37°C. Cells stain Gram-positive, form endospores and are motile. Cells are positive for catalase, oxidase, alkaline phosphatase, cystine arylamidase, acid phosphatase, naphtol-AS-BI-phosphohydrolase and pyrazinamidase. Asaccharolytic. Cells are susceptible to penicillin G, amoxicillin, amoxicillin + clavulanic acid, ceftriaxone, imipenem, erythromycin, doxycycline, rifampicine, vancomycin, ciprofloxacin, gentamicin, nitrofurantoin and resistant to metronidazole and trimethoprim/sulfamethoxazole. The G+C content of the genome is 53.1%. The 16S rRNA and genome sequences are deposited in Genbank and EMBL under accession numbers JN837488 and CAGW00000000, respectively.

The type strain phRT (= CSUR P177 = DSM 25447) was isolated from the fecal flora of an obese patient in Marseille, France.

Notes

Declarations

Acknowledgements

The authors thank Mr. Julien Paganini at Xegen Company (www.xegen.fr) for automating the genomic annotation process. This study was funded by the Mediterranee Infection Foundation.

Authors’ Affiliations

(1)
URMITE, Faculté de médecine, Aix-Marseille Université

References

  1. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012; 18:1185–1193. PubMedView ArticlePubMedGoogle Scholar
  2. Genome Online Database. http://www.genomesonline.org/cgi-bin/GOLD/index.cgi
  3. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266. PubMed http://dx.doi.org/10.1099/ijs.0.016949-0View ArticlePubMedGoogle Scholar
  4. Kokcha S, Mishra AK, Lagier JC, Million M, Leroy Q, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Bacillus timonensis sp. nov. Stand Genomic Sci 2012; 6:346–355. PubMed http://dx.doi.org/10.4056/sigs.2776064PubMed CentralView ArticlePubMedGoogle Scholar
  5. Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. Stand Genomic Sci 2012; 6:116–125. PubMed http://dx.doi.org/10.4056/sigs.2415480PubMed CentralView ArticlePubMedGoogle Scholar
  6. Mishra AK, Gimenez G, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Alistipes senegalensis sp. nov. Stand Genomic Sci 2012; 6:304–314. http://dx.doi.org/10.4056/sigs.2625821View ArticleGoogle Scholar
  7. Lagier JC, Armougom F, Mishra AK, Ngyuen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. Stand Genomic Sci 2012; 6:315–324. PubMedPubMed CentralView ArticlePubMedGoogle Scholar
  8. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Clostridium senegalense sp. nov. Stand Genomic Sci 2012; 6:386–395. PubMedPubMed CentralPubMedGoogle Scholar
  9. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Peptoniphilus timonensis sp. nov. [PubMed]. Stand Genomic Sci 2012; 7:1–11. PubMed http://dx.doi.org/10.4056/sigs.2956294PubMed CentralView ArticlePubMedGoogle Scholar
  10. Mishra AK, Lagier JC, Rivet R, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. Stand Genomic Sci 2012; 7:70–81. PubMedPubMed CentralView ArticlePubMedGoogle Scholar
  11. Lagier JC, Gimenez G, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description ofHerbaspirillum massiliense sp. nov. Stand Genomic Sci 2012; 7:200–209. PubMedPubMed CentralPubMedGoogle Scholar
  12. Roux V, El Karkouri K, Lagier JC, Robert C, Raoult D. Non-contiguous finished genome sequence and description ofKurthia massiliensis sp. nov. Stand Genomic Sci 2012; 7:221–232. PubMed http://dx.doi.org/10.4056/sigs.3206554PubMed CentralView ArticlePubMedGoogle Scholar
  13. Kokcha S, Ramasamy D, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov. Stand Genomic Sci 2012; 7:233–245. PubMed http://dx.doi.org/10.4056/sigs.3256677PubMed CentralView ArticlePubMedGoogle Scholar
  14. Ramasamy D, Kokcha S, Lagier JC, N’Guyen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Aeromicrobium massilense sp. nov. Stand Genomic Sci 2012; 7:246–257. PubMed http://dx.doi.org/10.4056/sigs.3306717PubMed CentralView ArticlePubMedGoogle Scholar
  15. Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description ofCellulomonas massiliensis sp. nov. Stand Genomic Sci 2012; 7:258–270. PubMed http://dx.doi.org/10.4056/sigs.3316719PubMed CentralView ArticlePubMedGoogle Scholar
  16. Shida O, Takagi H, Kadowaki K, Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 1996; 46:939–946. PubMed http://dx.doi.org/10.1099/00207713-46-4-939View ArticlePubMedGoogle Scholar
  17. List of Prokaryotic names with Standing in Nomenclature. http://www.bacterio.cict.fr
  18. Logan NA, Forsyth G, Lebbe L, Goris J, Heyndrickx M, Balcaen A, Verhelst A, Falsen E, Ljungh A, Hansson HB, De Vos P. Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov. Int J Syst Bacteriol 2002; 52:953–966. PubMedGoogle Scholar
  19. Goto K, Fujita R, Kato Y, Asahara M, Yokota A. Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (=NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol 2004; 54:419–427. PubMed http://dx.doi.org/10.1099/ijs.0.02906-0View ArticlePubMedGoogle Scholar
  20. Allan RN, Lebbe L, Heyrman J, De Vos P, Buchanan CJ, Logan NA. Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int J Syst Evol Microbiol 2005; 55:1039–1050. PubMed http://dx.doi.org/10.1099/ijs.0.63397-0View ArticlePubMedGoogle Scholar
  21. Baek SH, Im WT, Oh WH, Lee JS, Oh HM, Lee ST. Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2006; 56:2665–2669. PubMed http://dx.doi.org/10.1099/ijs.0.64382-0View ArticlePubMedGoogle Scholar
  22. Kim MK, Sathiyaraj S, Pulla RK, Yang DC. Brevibacillus panacihumi sp. nov., a beta-glucosidase-producing bacterium. Int J Syst Evol Microbiol 2009; 59:1227–1231. PubMed http://dx.doi.org/10.1099/ijs.0.001248-0View ArticlePubMedGoogle Scholar
  23. Choi MJ, Bae JY, Kim KY, Kang H, Cha CJ. Brevibacillus fluminis sp. nov., isolated from sediment of estuarine wetland. Int J Syst Evol Microbiol 2010; 60:1595–1599. PubMed http://dx.doi.org/10.1099/ijs.0.012351-0View ArticlePubMedGoogle Scholar
  24. Takebe F, Hirota K, Nodasaka Y, Yumoto I. Brevibacillus nitrificans sp. nov., a nitrifying bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks. Int J Syst Evol Microbiol 2012; 62:2121–2126. PubMed http://dx.doi.org/10.1099/ijs.0.032342-0View ArticlePubMedGoogle Scholar
  25. Sharma V, Singh PK, Midha S, Ranjan M, Korpole S, Patil PB. Genome Sequence of Brevibacillus laterosporus Strain GI-9. J Bacteriol 2012; 194:1279. PubMed http://dx.doi.org/10.1128/JB.06659-11PubMed CentralView ArticlePubMedGoogle Scholar
  26. Andersson AM, Weiss N, Rainey F, Salkinoja-Salonen MS. Dust-borne bacteria in animal sheds, schools and children’s day care centres. J Appl Microbiol 1999; 86:622–634. PubMed http://dx.doi.org/10.1046/j.1365-2672.1999.00706.xView ArticlePubMedGoogle Scholar
  27. Lee L, Tin S, Kelley ST. Culture-independent analysis of bacterial diversity in a child-care facility. BMC Microbiol 2007; 7:27. PubMed http://dx.doi.org/10.1186/1471-2180-7-27PubMed CentralView ArticlePubMedGoogle Scholar
  28. Parvez N, Cornelius LK, Fader R. Brevibacillus brevis peritonitis. Am J Med Sci 2009; 337:297–299. PubMed http://dx.doi.org/10.1097/MAJ.0b013e318189162 6View ArticlePubMedGoogle Scholar
  29. Tabbara KF, Juffali F, Matossian RM. Bacillus laterosporus endophthalmitis. Arch Ophthalmol 1977; 95:2187–2189. PubMed http://dx.doi.org/10.1001/archopht.1977.0445012 0093010View ArticleGoogle Scholar
  30. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archae, Bacteria, and Eukarya. Proc Natl Acad Sci USA 1990; 87:4576–4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576PubMed CentralView ArticlePubMedGoogle Scholar
  31. Gibbons NE, Murray RGE. Proposals Concerning the Higher Taxa of Bacteria. Int J Syst Bacteriol 1978; 28:1–6. http://dx.doi.org/10.1099/00207713-28-1-1View ArticleGoogle Scholar
  32. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119–169.View ArticleGoogle Scholar
  33. Murray RGE. The Higher Taxa, or, a Place for Everything…? In: Holt JG (ed), Bergey’s Manual of Systematic Bacteriology, First Edition, Volume 1, The Williams and Wilkins Co., Baltimore, 1984, p. 31–34.Google Scholar
  34. Validation list no. 132. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2010; 60:469–472. http://dx.doi.org/10.1099/ijs.0.022855-0
  35. Ludwig W, Schleifer KH, Whitman WB. Class I. Bacilli class nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 3, Springer-Verlag, New York, 2009, p. 19–20.Google Scholar
  36. Skerman VBD, Sneath PHA. Approved list of bacterial names. Int J Syst Bacteriol 1980; 30:225–420. http://dx.doi.org/10.1099/00207713-30-1-225View ArticleGoogle Scholar
  37. Prévot AR. In: Hauderoy P, Ehringer G, Guillot G, Magrou. J., Prévot AR, Rosset D, Urbain A (eds), Dictionnaire des Bactéries Pathogènes, Second Edition, Masson et Cie, Paris, 1953, p. 1–692.Google Scholar
  38. De Vos P, Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 3, Springer-Verlag, New York, 2009Google Scholar
  39. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25–29. PubMed http://dx.doi.org/10.1038/75556PubMed CentralView ArticlePubMedGoogle Scholar
  40. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155.Google Scholar
  41. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49:543–551. PubMed http://dx.doi.org/10.1086/600885View ArticlePubMedGoogle Scholar
  42. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541–547. PubMed http://dx.doi.org/10.1038/nbt1360PubMed CentralView ArticlePubMedGoogle Scholar
  43. Prodigal. http://prodigal.ornl.gov
  44. GenBank database. http://www.ncbi.nlm.nih.gov/genbank
  45. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964. PubMedPubMed CentralView ArticlePubMedGoogle Scholar
  46. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108. PubMed http://dx.doi.org/10.1093/nar/gkm160PubMed CentralView ArticlePubMedGoogle Scholar
  47. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783–795. PubMed http://dx.doi.org/10.1016/j.jmb.2004.05.028View ArticlePubMedGoogle Scholar
  48. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580. PubMed http://dx.doi.org/10.1006/jmbi.2000.4315View ArticlePubMedGoogle Scholar
  49. Lechner M, Findeib S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124. PubMed http://dx.doi.org/10.1186/1471-2105-12-124PubMed CentralView ArticlePubMedGoogle Scholar

Copyright

© The Author(s) 2013