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Abstract 

Background The anaerobic digestion process degrades organic matter into simpler compounds and occurs 
in strictly anaerobic and microaerophilic environments. The process is carried out by a diverse community of micro-
organisms where each species has a unique role and it has relevant biotechnological applications since it is used 
for biogas production. Some aspects of the microbiome, including its interaction with phages, remains still unclear: 
a better comprehension of the community composition and role of each species is crucial for a cured understanding 
of the carbon cycle in anaerobic systems and improving biogas production.

Results The primary objective of this study was to expand our understanding on the anaerobic digestion microbi-
ome by jointly analyzing its prokaryotic and viral components. By integrating 192 additional datasets into a previ-
ous metagenomic database, the binning process generated 11,831 metagenome-assembled genomes from 314 
metagenome samples published between 2014 and 2022, belonging to 4,568 non-redundant species based on ANI 
calculation and quality verification. CRISPR analysis on these genomes identified 76 archaeal genomes with active 
phage interactions. Moreover, single-nucleotide variants further pointed to archaea as the most critical members 
of the community. Among the MAGs, two methanogenic archaea, Methanothrix sp. 43zhSC_152 and Methanoculleus 
sp. 52maCN_3230, had the highest number of SNVs, with the latter having almost double the density of most other 
MAGs.

Conclusions This study offers a more comprehensive understanding of microbial community structures that thrive 
at different temperatures. The findings revealed that the fraction of archaeal species characterized at the genome 
level and reported in public databases is higher than that of bacteria, although still quite limited. The identification 
of shared spacers between phages and microbes implies a history of phage-bacterial interactions, and specifically 
lysogenic infections. A significant number of SNVs were identified, primarily comprising synonymous and nonsynony-
mous variants. Together, the findings indicate that methanogenic archaea are subject to intense selective pressure 
and suggest that genomic variants play a critical role in the anaerobic digestion process. Overall, this study provides 
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Introduction
The increasing demand for energy and the depletion 
of fossil fuels have shifted attention towards alterna-
tive energy production processes. One such process is 
anaerobic digestion (AD), which has a lower environ-
mental impact, while supporting the concept of circular 
economy by utilizing a variety of end-products including 
food, agricultural, industrial and municipal wastes. AD 
is a natural process that breaks down complex organic 
matter into simpler compounds, occurring in ecological 
niches with low oxygen or strictly anaerobic conditions, 
such as bogs, sediments and the guts of herbivores [1]. 
This process is also utilised at industrial-scale activities 
for biogas production. The breakdown is carried out by a 
microbial community that can range in complexity from 
a few species to an extremely complex microbiome con-
sisting of thousands of species [2–4]. The biogas obtained 
from industrial reactors typically contains a mixture of 
methane  (CH4) and carbon dioxide  (CO2), with trace lev-
els of hydrogen sulfide  (H2S), ammonia  (NH4

+), hydrogen 
 (H2), and various volatile organic compounds, depend-
ing on the feedstock and on the functional activity of the 
microbiota [5].

From a biotechnological perspective,  CH4 is the most 
significant constituent of the biogas generated during the 
methanogenesis step of the AD process and is produced 
by methanogenic Archaea [6, 7]. AD is carried out by a 
diverse community of microorganisms, where each spe-
cies has a unique role in highly specialized and complex 
microbiomes [8]. First, complex organic matter is trans-
formed by hydrolytic bacteria into soluble organic com-
pounds. Second, acidogenic bacteria transform the latter 
into intermediates (e.g., volatile fatty acids), with syn-
trophic acetogenesis playing an essential role in break-
ing compounds down into the simplest molecules. Third, 
methanogenesis is performed by archaea using ace-
tate, methylamine and/or  CO2 and  H2 to produce  CH4. 
Understanding the composition and role of each species 
in the community is crucial for a better understanding 
of the carbon cycle in anaerobic systems and improving 
biogas production. However, the isolation of many spe-
cies using classical microbiological techniques can be 
challenging, making metagenomics an ideal alternative 
for characterizing the community complexity. In addi-
tion to the microbiome, the efficiency of AD is dependent 
on several interconnected factors, including feedstock 

composition, temperature, organic loading rate, hydrau-
lic retention time, and other physicochemical parameters 
[9, 10]. Controlling these parameters can offer unique 
opportunities for microbial selection or manipulation to 
improve the process efficiency.

The rise of metagenomics in the last two decades 
has revealed the important role viruses play in shap-
ing microbial communities [11]. In many environments 
viruses are responsible for selective pressure, lateral gene 
transfer, and nutrients recycling, all of which impact the 
microbiota. Understanding their role at community level 
is crucial and offers an opportunity to fine-tune the AD 
process. Despite the important role viruses play, the 
viral community of AD has received little attention [12, 
13]. This gap is due to difficulties associated with viral 
metagenomics compared to the prokaryote investigation. 
To separate the viral fraction of the community from 
the microbial is challenging, as viruses represent a small 
fraction of the total genetic material. Therefore, viruses 
are more understudied than bacteria and archaea. How-
ever, research has shown that phages, in particular, are 
involved in microbiome dynamics and process stability, 
regulating microbial abundance and diversity in full-scale 
biogas units [14].

Metagenome sequencing has become a valuable tool to 
gain insights into the genetic repertoire of non-cultivable 
biogas community members [15]. Advances in sequenc-
ing throughput and computational techniques nowadays 
allow the recovery of Metagenome-Assembled Genomes 
(MAGs) from highly diverse environments [16]. These 
MAGs are obtained through binning together assem-
bled contigs with similar sequence composition, depth 
of coverage, and taxonomic affiliations [17–19]. Despite 
limitations regarding completeness and contamination 
[20], MAGs are useful proxies for studying microbial and 
viral genomes present in the system, providing insights 
into taxonomy, functional properties, and dynamics of 
the microbiome. Several studies have attempted to gain 
insights into the AD microbiome for biogas production 
[15, 21], but the limited geographic distribution of the 
samples and the lack of a global analysis on the viral frac-
tion have prevented a complete characterization of the 
microbiome. To address this gap, a global meta-analysis 
study was performed to tentatively assess the impact of 
physicochemical parameters, microbiota, and reactor 
characteristics on the AD process. The aim of this study 

a more balanced and diverse representation of the anaerobic digestion microbiota in terms of geographic location, 
temperature range and feedstock utilization.
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was to complement and consolidate previous results and 
establish a more comprehensive reference database of 
microbial and viral genomes. In addition, strain-resolved 
metagenomics was applied to reveal fine-scale evolution-
ary mechanisms, functional dynamics, and strain-level 
metabolic variation, potentially contributing to the selec-
tion within a microbial community.

Materials and methods
Collection of samples and metadata
In order to expand the Biogas Microbiome database [15], 
192 additional metagenomic datasets were retrieved from 
SRA using the SRA toolkit fastq-dump software v2.10.8 
[22]. The present version of the database now includes 
details regarding the 314 metagenomes derived from AD 
biogas reactors, which were identified through searches 
on SRA and the literature (Additional file 1). Only data-
sets published between 2014 and 2022 were considered, 
with metadata taken from the respective experiments 
when available. Temperature information was present 
in most experiments and classified as psychrophilic 
(0–19 °C), mesophilic (20–40 °C) and thermophilic (41–
56  °C). The metadata for the additional datasets can be 
checked in Additional file 1. Reads were filtered and qual-
ity checked as previously described [23] using a two-step 
procedure: at first Trimmomatic v0.39 [24] was used in 
its paired-end mode, using the parameters leading = 20, 
trailing = 20, slidingwindow = 4:20 and minlen = 70, 
at second, a further check was performed to remove 
adapters and contaminants associated to phiX174 with 
BBDuk v38.86 [25]; filtering was performed using the 
files “adapters.fa” and “phix174_ill.ref.fa” as references, 
and the parameters k = 21 ktrim = r mink = 11 hdist = 2 
threads = 4.

Assembly, binning, and coverage
Metagenome assembly was performed independently 
for all the samples of one experiment using MEGAHIT 
v1.2.9 [26]. Assembly statistics were obtained using 
QUAST v5.0.2 [27]. Bowtie2 [28] was used to map reads 
back to the contigs for the creation of coverage files for 
the binning analysis. Every assembly was binned both 
with MetaBAT2 v2.12.1 [29] and MaxBin v2.2.7 [30] 
using standard parameters. Previous experiments, which 
underwent analysis using MetaBAT2 only, were binned 
with MaxBin. 11,781 MAGs previously generated by Ma 
and colleagues [21] were downloaded from “http:// dx. 
doi. org/https:// doi. org/ 10. 5524/ 100842” and included in 
the database. Completeness and contamination of MAGs 
generated in this study and in MAGs generated by Ma 
and colleagues were assessed with CheckM v1.1.2 [31] 
and CheckM2 v0.1.2 [32] for comparative assessments 
across different versions of the software. MAGs with 

completeness lower than 50% and contamination higher 
than 10% were filtered out. The two sets of medium–high 
quality MAGs were combined and used as input for the 
dereplication step. MAGs were dereplicated with dRep 
v3.2.2 [33] using parameters coherent with the previ-
ously proposed definition of species [34]: 95% average 
nucleotide identity on at least 50% of the MAG genome. 
To ensure sequencing depth homogeneity, libraries were 
subsampled to 8 million reads and mapped onto the 
MAGs with Bowtie2 v2.5.0 [28]. For each prokaryotic 
MAG, the relative abundance and reads counts were 
calculated with coverM (https:// github. com/ wwood/ 
CoverM) using the “genome” subcommand. Alpha-
diversity was calculated with the “estimate_richness” 
function of Phyloseq v1.40.0 R package [35] using the 
mapped reads counts on the MAGs. Beta-diversity was 
calculated with ExpressBetaDiversity v1.0.10 [36] using 
Bray–Curtis dissimilarity and the relative abundances of 
prokaryotic MAGs. Virus predicting software PPR-Meta 
v1.1 [37], CheckV v0.7.0 (end_to_end program) [38], 
and VIBRANT v1.2.0 [39] were launched on the assem-
bled contigs. A contig was assigned as viral if the predic-
tion was independently confirmed by at least two of the 
applied programs. All the scaffolds predicted as viral but 
shorter than 5 kbp were removed to reduce the number 
of mispredicted and partially assembled viral genomes.

Taxonomy and functional prediction
GTDB-Tk v1.4.1 [40] was used to taxonomically assign 
prokaryotic MAGs, with the release 95 of Genome Tax-
onomy Database (GTDB) serving as reference database. 
Prodigal v2.6.3 [41] was used to predict protein-encod-
ing genes, and functional annotation was carried out 
with eggnog-mapper v2.1.7 [42] on dereplicated MAGs 
and viral genomes. The completeness of KEGG modules 
was determined for each MAG using KEMET (release 
version July 2022) [43] with the parameter ’-a eggnog’ 
utilized to incorporate the eggNOG annotations. MAG 
functions were assessed by manually inspecting specific 
KEGG modules related to functional classes of AD: 
methanogenesis (M00357, M00567); beta-oxidation 
(M00087); anaerobic carbon metabolism (M00173, 
M00377, M00618); nitrogen metabolism (M00528, 
M00529, M00530, M00531, M00615, M00804); sulfate 
reduction (M00176, M00596). For phylogenetic analy-
sis of MAGs, PhyloPhlAn 3.0.51 [44] was used with the 
parameters—diversity high and—fast, and PhyloPhlAn 
database. The resulting Newick file was visualized using 
iTOL v6.7 [45]. Taxonomic assignment of phages was 
carried out using PhaGCN v2.0 [46] considering con-
tigs above 5kbp (–len 5000).

http://dx.doi.org/
http://dx.doi.org/
https://doi.org/10.5524/100842
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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Replication rate estimation
Species replication rates across the 8 million reads 
subsamples were estimated using CoPTR v1.1.4 with 
default parameters [47]. This approach estimates the 
slope of read coverage on genomes or MAGs assum-
ing that fast-replicating microbes are associated with 
increasing DNA abundance the closer a sequence is to 
the origin of replication. Such a slope is named peak-to-
trough ratio (PTR) and quantifies DNA synthesis and 
generation rate in terms of an adimensional coverage 
decay rate, which in turn is a proxy of microbial repli-
cation rate. To guarantee robust PTR estimates, MAGs 
with minimum 5,000 aligned reads were selected for 
this analysis.

CRISPR detection
MinCED v0.4.2 [48] was used to identify clustered regu-
larly interspaced short palindromic repeats (CRISPR) 
spacers in the dereplicated MAGs. A BLAST v2.6.0 
[49] search for viral sequences recovered in this study 
against the spacers was performed using parameters 
including -task blastn-short, -gapopen 10, -gapextend 2, 
-penalty -1, -word_size 7, -perc_identity 100, as previ-
ously reported [50]. The results were filtered to include 
only those that matched the whole length of the spacer. 
To visualize interactions between Phages and Archaea, 
HoloViews v1.15.4 (https:// github. com/ holov iz/ holov 
iews), along with Pandas (v2.3.1) and NumPy (v1.21) 
packages in python v3.6.13 were used. The phage cover-
age was estimated using CoverM v0.6.1 with the “contig” 
subcommand. To compare the presence of phages in dif-
ferent experiments for each virMAG, the abundance was 
divided by the total number of reads in each sample.

Strain analysis
The analysis of variants was performed using the tool 
InStrain v1.6.3 [51], specifically the module “profile”. To 
do this, a scaffold-to-bin-file establishing correspond-
ences between contigs and 160 MAGs was generated 
using the parse_stb.py script from the dRep v3.2.2, and 
the ORF prediction file obtained using Prodigal v2.6.3. 
InStrain profile was launched with additional parameters: 
“–min_genome_coverage 1”, “–skip_plot_generation”, 
“–min_mapq 2”, “–min_read_ani 0.98” and “–skip_mm_
profiling”. A MAG was deemed present in the sample 
only if it exhibited a breadth of coverage greater than 
0.5. Variants were then filtered based on the procedure 
outlined in Ghiotto et  al. (2023) [52]. The Mann–Whit-
ney U-test was employed to evaluate the accumulation 
of variants within a specific phylum in comparison to the 
overall population. The distribution of SNVs/Mbp for 

each phylum was compared against the SNVs/Mbp of all 
MAGs containing SNVs.

Statistical analysis
The Pearson correlation between Chao1, Shannon 
alpha-diversity indices, temperature, and checkM and 
checkM2 quality estimates was calculated in R v4.2.1 
utilizing ggpubr v0.6.0. The cumulative abundance of 
archaeal MAGs was defined as the sum of all samples 
relative abundance with complete and one block miss-
ing of M00357 (Methanogenesis, acetate =  > methane) 
and M00567 (Methanogenesis, CO2 =  > methane) KEGG 
modules. The read counts of MAGs with complete and 
one block missing M00357 and M00567 KEGG modules 
were filtered and values normalized as relative abun-
dance. The data were then plotted using the Complex-
Heatmap v2.12.1 R package [53].

To determine the relationship between PTR and pro-
cess temperature for individual MAGs, those detected in 
at least five different temperature values spanning a mini-
mum range of 10  °C were selected, in order to consider 
a reasonable temperature spectrum. For the selected 
MAGs, second-order ordinary polynomial models were 
fitted with temperature and PTR as independent and 
dependent variables, respectively, using the lm func-
tion in R v3.6. To correct for multiple testing, the p-val-
ues were adjusted for linear and quadratic coefficients 
using the Benjamini–Hochberg method. Fits that had at 
least one significant coefficient at a 0.1 FDR level were 
selected. Finally, preferential temperature ranges were 
calculated by considering PTR values greater or equal to 
the median PTR of each MAG independently, and then 
taking maximum and minimum temperatures for the 
conditions where these were detected. Only MAGs hav-
ing at least three PTR values available were considered in 
this case.

Results and discussion
Expansion of the global anaerobic digestion microbiome 
database
To create a more balanced representation of MAGs 
from various countries, the previous iteration of the 
Biogas Microbiome database featured sequences from 
18 studies, containing 123 samples [15]. However, it was 
biased towards samples collected from Denmark, which 
accounted for 68% of the database, mostly deriving from 
laboratory-scale biogas reactors and batch tests. In the 
present version, we added 24 studies to the database, 
resulting in a total of 314 samples. Notably, a significant 
number of samples and MAGs, derived from Chinese 
biogas plants, were included in a recent study and imple-
mented in the new database [21]. This expanded Biogas 

https://github.com/holoviz/holoviews
https://github.com/holoviz/holoviews
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Microbiome database now encompasses samples col-
lected in eleven countries (Fig. 1, Additional file 1), with 
China and Denmark being the primary contributors, 
accounting for 75% of the total number of samples. Sam-
ples were categorized according to reactor type, with 111 
described as “lab scale” or “batches” operated in six coun-
tries, 104 described as “full-scale biogas plants”, and 99 as 
“(semi)continuous lab reactors” or “CSTR” (Additional 
file 1).

To gather data, only basic statistics were collected from 
the metadata of different publications. The data were 
evenly distributed across different temperatures, with 
4% being psychrophilic, 51% mesophilic, and 38% ther-
mophilic; 22 samples had no clearly reported operating 
temperature or reactor type. This study provides a more 
comprehensive representation of microbiota structure 
and species growing over a wider range of temperatures, 
compared to previous investigations [15]. Temperature 
is an essential factor in determining the diversity of the 
community, as it was found to be inversely correlated 
with Chao1 and Shannon alpha-diversity indices (Pear-
son’s r = − 0.4, p = 1·10–12) (Additional file 2: Fig. 1). The 
three samples with the highest diversity were collected 
from reactors operated at the lowest temperature, such as 
Ma_2021_BGP_27, 29, and 34, with temperatures rang-
ing from 14 to 17 °C and having Chao1 ∼4,566 and Shan-
non ∼6.37 (Fig.  1). Previous studies have reported that 
psychrophilic temperatures have more diversity of meth-
anogenic Archaea [54] and fluctuation in rare biosphere 
taxa [55] than mesophilic reactors, which represented the 

majority of the samples in this study. However, psychro-
philic temperatures generally slow down the metabolic 
activity of anaerobic microorganisms. This can result 
in a prolonged retention time for organic matter in the 
digester and lead to a decrease in methane yield per unit 
of organic matter compared to mesophilic or thermo-
philic conditions [56, 57].

Prokaryotic community composition
The binning process generated 11,831 MAGs, which, 
when combined with the database by Ma and colleagues 
[21], resulted in a total of 26,612 MAGs. To reduce redun-
dancy, 4,568 MAGs were selected for clustering based 
on ANI calculation and quality analysis with CheckM. 
Of these, 2,217 (48.5%) were classified as high quality 
(completeness >  = 90%; contamination <  = 10%) while 
2,351 (51.5%) were of medium quality (90% > complete-
ness >  = 50%; contamination <  = 10%) (see Availability of 
Data and Materials). These results were validated with 
CheckM2 and presented a high correlation with those 
of CheckM  (R2 = 0.7). This concordance is especially rel-
evant as it demonstrates the accuracy of CheckM2 on a 
large dataset, while still validating quality assessments 
obtained with CheckM. Specifically, the estimated com-
pleteness was higher for 59% of the MAGs, lower for 
40.8%, and 0.24% showed the same value as CheckM. 
Notably, out of the 387 Candidatus MAGs, 293 (75.7%) 
had higher completeness scores with CheckM2, and 57 
(14.7%) had completeness scores that were two times 
higher than CheckM. Additionally, 76% of the samples 

Fig. 1 Geographic and microbial diversity of the expanded Biogas Microbiome database. The expanded anaerobic digestion microbiome database 
includes 314 samples distributed across 11 countries, with Denmark and China being the origin of most samples. Information about all the samples 
can be visualized in Additional file 1
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had more than 50% mapped reads, indicating that this 
version of the Biogas Microbiome database predomi-
nantly characterizes the microbiome. The batch experi-
ment enriched culture with cellulose (Jia_2018_Batch_12 
and 13) [58] had the highest proportion of mapped reads, 
with about 94% of bacterial MAGs mapped.

Taxonomic investigation on the prokaryotic commu-
nity revealed that members of Firmicutes dominate, com-
prising 38% of the MAGs in the database, followed by 
Proteobacteria (12%) and Bacteroidetes (10%). Archaea 
are represented by 198 species (4.3%), mainly from the 
Euryarchaeota phylum (76.3%), while Candidatus Bath-
yarchaeota and Candidatus Diapherotrites are repre-
sented by 13 and 12 members, respectively. Previous 
metataxonomy-driven investigations [15] identified 53 
MAGs belonging to the Euryarchaeota phylum while the 
other Candidatus phyla were not represented. Moreover, 
among the archeal population, Euryarchaeota were simi-
larly identified as the predominant phylum in another 
large-scale study examining the microbiome of 80 anaer-
obic digesters [59]. Among all the MAGs identified, only 
a small number (3.7%) were assigned at species level (152 
Bacteria and 19 Archaea), while 19.3% were assigned at 
genus level (794 Bacteria; 87 Archaea). These results 
confirm that the fraction of archaeal species already 
characterized at genome level and reported in public 
repositories of microbial genomes is higher (9.6%) than 
that of bacteria (3.5%), but still very low.

Analysis performed on MAG relative abundance in 
all the samples provided insight into the distribution 
of microbial species in the database. By calculating the 
number of samples in which each MAG abundance was 
greater than 0.01, 0.1, and 1%, Firmicutes, Euryarchaeota, 
Bacteroidetes, Proteobacteria, and Synergistetes were 
identified to be more widespread, while others, such as 
Fibrobacteres, Ignavibacteriae, Crenarchaeota, and many 
Candidatus phyla had a more scattered distribution 
(Additional file  2: Fig.  2). Similar results were obtained 
using 0.1% or 0.01% as the relative abundance threshold 
to define the presence of a MAG (see Availability of Data 
and Materials). Strikingly, all the four bacterial strains 
enriched in previously characterized biofilm commu-
nities developed on the gas injection systems of biogas 
upgrading reactors were among the top widespread 
MAGs across samples at all relative abundance thresh-
olds [60]. These MAGs include Firmicutes 50dbBF_058, 
Firmicutes 50dbBF_049, Firmicutes 50dbBF_057, and 
Synergistaceae sp. 24abBP_148. In particular, the most 
widely detected MAG Firmicutes 50dbBF_058 is alterna-
tively classified as Limnochordia DTU010 and was pre-
viously found to possess the glycine cleavage system and 
the glycine synthase-reductase pathway for  CO2 reduc-
tion, which are considered important for establishing 

syntrophic interactions with methanogens [60]. Other 
45 less widespread MAGs were here assigned to Limno-
chordia DTU010 and several species of the same order 
have also recently been identified across a numerous 
independent set of full-scale plants in sensible abundance 
[61], further raising our interest in this uncharacterized 
taxon. Besides, MAGs belonging to the phylum Candi-
datus Atribacteria were widespread but with a low rela-
tive abundance (less than 0.1%). This finding suggests 
that methanogenic Archaea and Synergistetes, for which 
only a small number of MAGs have been identified in the 
database, play crucial roles and are very flexible, being 
able to adapt to a variety of environmental conditions. 
The two most widespread Archaea, Methanothrix sp. 
43zhSC_152 and Candidatus Methanoculleus thermohy-
drogenotrophicum 31mySI_10, were detected in 49 and 
42 samples, respectively, with relative abundance ≥ 1%. 
Similarly, the two most common Synergistetes MAGs, 
Synergistaceae sp. 24abBP_148 and Acetomicrobium fla-
vidum 43zhSC_162, were present in 35 and 15 samples 
at relative abundance ≥ 1%. In fact, members of the Syn-
ergistaceae taxon were previously found to show ace-
tate-oxidizing ability, which may work in syntrophy with 
hydrogenotrophic methanogens for methane production 
[62, 63]. This crucial cooperation activity may explain the 
similar common widespread distribution of these two 
phyla. On the other hand, some Candidate phyla and 
Planctomycetes have a scattered distribution. Genome 
size is correlated with the number of genes and, on aver-
age, Planctomycetes have the second-highest genome 
size. This suggests that the ability to colonize many differ-
ent samples is not necessarily related to species gene con-
tent. The highest archaea/bacteria ratio was found in a 
thermophilic batch reactor fed with a synthetic medium 
containing methanol (Yan_2020_Batch_2, Additional 
file 1). The Archaea in Yan and colleagues [62] is repre-
sented by one MAG from the Euryarchaeota phylum 
with 100% completeness which could not be taxonomi-
cally assigned with higher specificity, indicating the need 
for a more detailed taxonomic investigation on some 
Archaea branches.

Phage‑prokaryote interactions indicate shared adaptation 
strategies
A total of 79,922 viral genomes were identified after 
dereplication, and 32% of them were successfully classi-
fied. The composition of the viral community was largely 
dominated by tailed bacteriophages of the class Cau-
doviricetes, as established by previous works [12, 13, 64, 
65], comprising 97.6% of all viruses. Families Strabo-
viridae, Peduoviridae, and Herelleviridae were the most 
represented in the dataset, with 2,927, 2,887, and 2,825 
members, respectively. However, the family with the 



Page 7 of 19Centurion et al. Environmental Microbiome            (2024) 19:1  

greatest coverage in the 268 samples was Peduoviridae, 
followed by Straboviridae and Drexlerviridae (Additional 
file  2: Fig.  3B, see Availability of Data and Materials for 
full statistics). The virome of the 314 samples analyzed 
represented between 8 ×  10–4 and 0.86% of the total com-
munity. As expected, 11 samples from an enrichment 
of viromes experiment [12] had a higher proportion of 
phages (0.35–0.86%). However, the virus with the high-
est proportion, virMAG MPIJXP02F1_92297, was found 
at low abundance in these samples, while thermophilic 
reactors fed with exhausted gasses and carbohydrates 
had a higher abundance of this virus. Although PhaGCN 
was not able to taxonomically identify this phage, the 
presence of enzymes related to DNA binding domains 
(pfam13443), transposase related to bacteriophages 
(COG5421), and DNA-binding transcriptional regulator 
(COG3655) confirmed its classification as a viral genome. 

Permanova analysis revealed a significant correlation 
(p < 0.01) between the temperature of the reactor and the 
presence of different phages (Additional file  2: Fig.  3A). 
Considering taxonomically classified phages with rela-
tive abundance over 0.3%, 27 out of 47 families were 
influenced by temperature. Rudiviridae predominated in 
reactors below 25 degrees, while Suoliviridae (n = 527) 
and Winoviridae (n = 256) were most represented among 
the 10 dominant families in mesophilic environments. In 
thermophilic environments, Peduoviridae, Herelleviri-
dae, Casjensviridae, and Drexlerviridae had the highest 
representation among the 16 dominant families.

Detection of some evidence regarding previous infec-
tions can be used to study virus-host interactions. 
CRISPR spacers in particular were used to identify 
2901 interactions between 546 MAGs and 1,822 viruses 
(Fig.  2A). The presence of shared spacers between 

Fig. 2 Microbial diversity of the expanded Biogas Microbiome database. Microbial community similarity across samples expressed by beta-diversity. 
Outer circles indicate the operational temperature and the community alpha-diversity as expressed by Chao1 and Shannon index
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phages and bacteria suggests a history of phage-bac-
terial interactions, and specifically lysogenic infec-
tions [66]. Most phages had only one host, but virMAG 
384269_AS06 (Herelleviridae family) shared 40 dif-
ferent spacers with one bacterial MAG, Candidatus 
Anammoximicrobium sp. 06rmzA_251. Both have sim-
ilar GC percentages (62.61–64.4) and are found exclu-
sively in one experiment [67], suggesting they shared a 
long period of co-evolution, with the incorporation of 
new spacers in the bacteria and the ability to evade the 
recognition of CRISPR system by phages. In contrast, 
virMAG 27752_AS02 (family Straboviridae) was found 
in spacers of 8 different MAGs belonging to Firmi-
cutes Phyla, order Clostridiales, with the exception of 
one MAG of Tissierellia class. This phage has a broader 
range of infection and can be present in different condi-
tions, from samples with only blood agar (BA) medium 
and casein (Zhu_2019_CSTR_2) to complex feedstock 
such as raw municipal biowaste (Tsapekos_2021_
CSTR_5). One of the most abundant phages (virMAG 
MPIBJC05F1_637440, family Vertoviridae) is present 
in 174 different samples from 9 countries and only 
two hosts were identified: Firmicutes sp. 28xzH2_85 
and Clostridiaceae sp. 31mySI_51, with similar GC% 
and taxonomically close. Despite the specificity of this 
virus, the host’s widespread distribution allowed its 
spread in the AD system across different environmental 
conditions.

In the majority of the analyzed experiments, the 
archaeal abundance was lower than bacteria, which lim-
ited the detection of CRISPR. Despite this limitation, 
76 archaeal genomes were identified to possess CRISPR 
arrays with more than 4 spacers. Further analysis of 
these genomes revealed that the genera Methanother-
mobacter and Methanosarcina were the most infected, 
accounting for 70% of all recorded virus-archaea inter-
actions (Fig. 2B). Phages infecting Methanothermobac-
ter and Methanosarcina archaea do not belong to the 
same family. In fact, those with the highest abundance 
infecting Methanothermobacter are found in a set of 
batch experiments (Kougias_2016_Batch) [68], while 
phages infecting Methanosarcina are less dominant 
but distributed across a greater number of samples, 

including batch experiments (Ma_2021_BGP_52) and 
biogas plants fed with sweet potato [21] and manure 
[12].

Functional analysis of the microbial community
To understand the biological drivers of AD, functional 
annotation was integrated with taxonomic abundance, 
stratifying KEGG modules at different taxonomic levels. 
In order for a microbial consortium to perform a meta-
bolic process, the simultaneous presence of all its func-
tional units is required, though some gaps may exist 
in MAGs. As a result, only MAGs with complete and 
one-block-missing modules were considered (Addi-
tional file  3 for Archaea, Additional file  4 for Bacteria). 
Some functional modules are of particular interest in 
AD communities (Materials and methods, Taxonomic 
and functional prediction. Besides the obvious role of 
methanogenesis,beta-oxidation is relevant for fatty acid 
degradation when feedstocks are particularly rich in 
lipids. Additionally, modules involved in anaerobic car-
bon metabolismnitrogen metabolism, and sulfate reduc-
tion were also considered due to their influence on the 
AD process efficiency. and on the interactions between 
Bacteria and Archaea. For example, ammonia nitrifi-
cation influences methane production since  NH4 can 
strongly affect both the methanogenesis process, and the 
growth of methanogens, including for example Methano-
bacterium, Methanosarcina, and Methanospirillum spp. 
[69, 70].

Archaeal community
Out of 198 archaeal MAGs, 70 (35%) have either com-
plete or one missing block for methane production from 
acetate (M00357; acetoclastic methanogens), with most 
belonging to the class Methanomicrobia (72%), followed 
by Methanobacteria (24%). Considering methane pro-
duction from  CO2 (M00567; hydrogenotrophic metha-
nogenesis), the proportion of Methanomicrobia is even 
higher, with 55 MAGs out of 72 (76%). Out of the total 
89 MAGs with either one of the methane production 
modules, 72% have both methane production modules, 
of which 69% belong to the Methanomicrobia class and 
19% to Methanobacteria. Both classes are reported in 

Fig. 3 Phylogenetic tree and virome interaction. A The tree is represented in an inverted orientation, with branches color-coded according 
to phylum taxonomy. Legend is clockwise oriented starting from Euryarchaeota phylum The outermost ring exhibits the phylogenetic classification 
of the various taxa (Phylum), followed by subsequent rings that display the log-normalized coverage for each MAG (Coverage), the percentage 
of guanine-citosine (GC%), and the number of interactions with phages (Phages). Red asterisks indicate MAGs with more than 32 phage interaction 
signals. Phages that infect more than two MAGs are indicated by inner lines. B Relationships between different archaeal genera and the phages 
that infect them, the numbers indicate the total number of genomic sequences

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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literature as hydrogenotrophic methanogens, which is 
the most widespread pathway in Archaea [71]. Except for 
Candidatus Methanoculleus thermohydrogenotrophi-
cum 31mySI10, which has a well-defined taxonomic 
affiliation, all the Candidatus archaeal MAGs harbor 
incomplete (or two block missing) methanogenic mod-
ules (Fig.  3A), indicating the need for a more detailed 
functional investigation. Actually, a significant portion 
of genes found in archaea, ranging from approximately 
30% to as high as 80%, code for proteins labeled as ’hypo-
thetical proteins’. This is primarily due to the challenges 
in isolating and culturing most archaea in the labora-
tory, which makes experimental characterization of their 
gene repertoire difficult [72]. In contrast, the three most 
abundant archaeal MAGs in all the samples (Candidatus 
Methanoculleus thermohydrogenotrophicum 31mySI10, 
Methanotrix sp. 43zhSC152, and Methanothermobacter 
wolfeii 31mySI 58) have both modules complete. How-
ever, only Methanothrix exhibits both functional meth-
ane pathways in  vivo experiments [73]. Methanoculleus 
and Methanothermobacter are known hydrogenotrophs 
[74], and there is no evidence that they use acetoclas-
tic pathways. This emphasizes the necessity for specific 
archaea annotations to ensure more precise genomes 
characterization (Fig. 4).

The estimation of the relative abundance of each KEGG 
module in each sample was obtained by considering the 
complete modules and those with one block missing. 
According to this calculation, samples “Kouzuma_2017_
CSTR_4” and “Shi_2021_Batch_1” had the highest values 
for methanogenesis KEGG modules (M00357, M00567) 
(Fig.  3B). In the “Shi_2021_Batch” experiment, hydro-
char was used to enrich methanogenic species including 
Methanobacterium, Methanolinea, and Methanothrix 
genera, and increase methane production. Conversely, 
“Kouzuma_2017_CSTR_2 and 4” and most samples of 
“Zhu_2020_CSTR” had the highest abundance of aceto-
clastic functions, represented by Methanosarcina, and 
Methanothermobacter taxa. The presence of a diverse 
range of feedstock compositions can be observed in sam-
ples where methane production modules exhibit a rela-
tive abundance of over 10%, including acetate [4, 74–76], 
casein [75], glucose [75], oleate [67, 77], manure [67, 
77–79], lactate [4], butyrate [4], propionate [4, 79], sludge 

[80], and municipal biowaste [81]. However, the most 
abundant samples with both modules [4, 74, 79] were fed 
with acetate and propionate.

The observed variations in methanogenesis and aceto-
clastic functions across different biogas reactors indicate 
a significant influence on the microbial community com-
position on biogas production. The enrichment of metha-
nogenic species in certain samples, facilitated by specific 
experimental conditions such as the use of hydrochar, 
suggests a potential for increased methane production. 
The confirmation that reactors fed with organic acids, 
particularly acetate, enrich specific microbial species, 
irrespective of temperature conditions, suggests a stra-
tegic approach for optimizing biogas production. These 
findings emphasize the importance of tailoring substrate 
selection and reactor conditions to enhance the perfor-
mance of microbial communities, providing valuable 
insights for improving overall biogas yields in anaerobic 
digestion processes.

Bacterial community
The results obtained from the functional analysis indi-
cate that three KEGG modules are widespread in the 
AD bacterial community: beta-oxidation (M00087), dis-
similatory nitrate reduction to ammonium (M00530), 
and assimilatory sulfate reduction to sulfide (M00176) 
(Additional file  2: Fig.  4). The presence of the “dissimi-
latory nitrate reduction to ammonium” function in 71% 
of phyla suggests that denitrification is widespread in 
the AD community, and according to this, the two-step 
process of nitrate conversion to ammonia and finally to 
nitrogen through denitrification of nitrate to nitrogen 
module (M00529) is very common. Despite other studies 
reported that the bacterial dissimilatory nitrate reduction 
to ammonium pathway only dominates under low nitrate 
availability and in sulfide-free environments [82, 83], the 
present data suggest that species using nitrate (rather 
than oxygen) as electron acceptor are dominant in the AD 
microbiome. A previous study used a CSTR to remove 
linear alkylbenzene sulfonate (LAS) present in commer-
cial laundry wastewater (Delforno_2020_CSTR_1); in 
this investigation a higher abundance of dissimilatory 
nitrate reduction to ammonium, denitrification, and 
beta-oxidation modules were identified (Additional file 2: 

(See figure on next page.)
Fig. 4 Methanogenesis modules in archaeal MAGs. A Phylophlan tree with all archaeal MAGs encoding the methanogenesis modules. MAGs 
quality (completeness and contamination) and their cumulative abundance (%) are displayed in the three innermost circles. The MAGs more 
frequently identified in the samples of the AD database are highlighted in light purple. B Heatmap reporting the samples with more than 10% 
relative abundance of complete and one block missing methanogenesis modules. The barplot represents the relative abundance of each genus 
in the samples and was calculated by taking into account only MAGs with complete modules, and those with one block missing. M00357: 
methanogenesis, acetate =  > methane; M00567: methanogenesis,  CO2 =  > methane
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Fig. 4 (See legend on previous page.)
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Fig. 4). Beta-oxidation is the second step of LAS degrada-
tion and is mainly performed by Synergistes and Syntro-
phus, which are widespread genera in LAS degradation 
reactors [84–86]. Wastewater frequently contains sev-
eral nitrogen-rich compounds, including nitrate, nitrite, 
and ammonia [87], which may have contributed to the 
enrichment of bacteria capable of converting nitrogen to 
different oxidation states.

Nitrogen metabolism was frequently identified in 
some taxa including the candidate Zixibacteria divi-
sion and Acidobacteria. For example, half of the MAGs 
assigned to the candidate Zixibacteria division have 
the complete function of nitrification (M00528) and 
denitrification (M00529), reflecting their metabolic ver-
satility [88]. Regarding the Acidobacteria phylum, nitri-
fication (M00528) and complete nitrification (M00804) 
modules were identified in 50% and 25% of the MAGs, 
respectively; despite this finding the nitrification ability 
was not proven in isolates of the Acidobacteria phylum 
[89, 90]. The Acidobacteria nitrification function was 
more abundant in thermophilic manure-supplemented 
biogas plants with high biogas production and low pH 
(Campanaro_2018_BGP_3).

AD biogas production is heavily influenced by the 
organic substrates used. Some of these substrates may 
contain inhibitors such as sulfides, which can negatively 
affect the microbiome and decrease the AD process effi-
ciency [91]. For example, sulfate-reducing bacteria (SRB) 
encoding proteins involved in the assimilatory sulfate 
reduction to sulfide function can compete with hydrog-
enotrophic archaea for hydrogen, and generate  H2S 
as final product [65, 66]. In particular, a batch reactor 
fed with cellulosic and xylan biomass (Jia_2018_Batch) 
showed the highest representation of assimilatory sul-
fate reduction to sulfide across MAGs. Although the  H2S 
concentration was not reported, all the batch experi-
ments produced low concentration of  CH4 (0.2–1.5 mM), 
suggesting that the process predominantly shifted to 
sulfate reduction [55]. Indeed, 68% of “Jia_2018_Batch” 
library read counts mapped to the Clostridium butyricum 
37jiCB_291 MAG, a known SRB [83]. Overall, a global 
Biogas Microbiome database can be useful to infer puta-
tive inhibitory in the AD process by analyzing the path-
ways of the MAGs identified.

In contrast, key carbon metabolism modules includ-
ing the Arnon-Buchanan cycle, the WL pathway, and the 
acetogenesis are complete or have only one block missing 
in less than 25% of the total MAGs suggesting these are 
shell modules in the AD system [92]. Nevertheless, these 
metabolic routes for carbon were identified in a range of 
phyla including Actinobacteria, Chloroflexi, Firmicutes, 
Ignavibacteriae, Proteobacteria, and Spirochaetes. The 

Arnon-Buchanan cycle module, involving a reverse cit-
ric acid cycle for  CO2 fixation, was the most abundant 
in samples inoculated with sludge (Macedo_2020_CSTR 
and Zhang_2020_Batch), while the WL and acetogen 
modules were more abundant in a CSTR sample for the 
AD of saccharides with a feedstock of volatile fatty acid 
mixture (Zhu_2019_CSTR_5).

Microbial replication rates are linked to their functional 
capabilities
To characterize microbial dynamics across AD systems, 
we calculated the peak-to-trough ratio (PTR) of the 
MAGs coverage, which estimates DNA synthesis and 
generation rate [47]. Sample-specific PTRs were obtained 
for 782 MAGs in the dataset, corresponding to those 
genomes meeting the minimal coverage requirement in 
at least one sample. As a result, PTR values were deter-
mined in fewer than 20 samples for most MAGs, while 
for others, e.g. Methanothrix sp. 43zhSC_152, Synergista-
ceae sp. 24abBP_148, Bacteroidales sp. 28xzH2_30, and 
various members of Firmicutes, PTRs were estimated 
for over a hundred samples, reflecting their widespread 
abundance. Resulting PTR values generally have a long-
tail distribution, with a median of 0.37 and exceeding 2 
in some cases, with varying spread across different tax-
onomic groups (Additional file  2: Fig.  5). Within these 
distributions, both coarse- and fine-grain trends match-
ing previous knowledge were observed. Firstly, acetoclas-
tic and hydrogenotrophic methanogens exhibited a low 
mean PTR, consistently with direct measures of the repli-
cation rate in isolates (Additional file 2: Fig. 6). Secondly, 
slightly lower mean PTR was observed in batch reactors, 
consistently with the limited duration and efficiency of 
the processes therein compared to CSTRs and full-scale 
plants. When considering individual microorganisms, 
significant PTR trends for MAGs classified at genus or 
species level are in some cases in agreement with docu-
mented growth temperature preferences, where robust 
PTR distributions could be recovered (Fig.  5) [93, 94]. 
In particular, microorganisms of the Methanoculleus 
genus are cultivated at a temperature between 28° and 
37  °C, and Methanoculleus sp. 52maCN_3230 has an 
estimated optimal growth temperature in approximately 
the same interval. Porphyromonadaceae sp. 02xzSI_42 
reaches the highest PTR values around 40  °C, which is 
its recommended cultivation temperature [93]. Similarly, 
Methanosarcina thermophila 28xzH2_79 has detect-
able non-null PTR values predominantly close to 55  °C, 
even though some outliers were found in the mesophilic 
range. PTR distribution for other species, including 
Methanobacterium sp. 29adLB_146, Aminobacterium 
sp. 23ysBP_18, and Syntrophorhabdus sp. 42zhAM_214, 
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show their maximum values in the 25–40  °C range, in 
agreement with the largely mesophilic representation of 
these genera [94]. Although replication rate is generally 
influenced by a variety of factors, together, these patterns 
support the overall soundness of obtained distributions.

Besides, other less obvious trends were found. While 
Verrucomicrobia, Fibrobacteres, and Planctomycetes are 
among the phyla with the largest mean PTR, subsets of 
Proteobacteria and Bacteroidetes show a more noticeable 

long tail around large values (Additional file  2: Fig.  5). 
More specifically, MAGs classified as Syntrophobacte-
rales seem to have fast replication rates in several con-
ditions. This taxon harbors sulfate reducers, which can 
efficiently metabolize substrates such as pyruvate, metha-
nol, and glucose and outcompete methanogens when 
sufficient sulfate is available [95, 96]. These results are 
confirmed by the long tail of PTRs associated with assim-
ilatory sulfate reduction (Additional file  2: Fig.  6), and 

Fig. 5 Relationship between PTR and temperature for individual MAGs. Shown values refer to significant relationships as assessed by quadratic 
polynomial fits, based on a FDR-adjusted p-value threshold of 0.1
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thus support the rapid proliferation capability of these 
microbes. Other of such fast-growing microbial groups 
are Bacteroidales (e.g. Proteiniphilum sp. 29adLB_192), 
with relevant proteolytic role [97], and microbes involved 
in fatty acid oxidation (Additional file  2: Fig.  7). These 
groups could represent species with high energy genera-
tion capability from the breakdown of such macromol-
ecules. Moreover, archaeal phyla also have a wide range 
of replication rates, with some MAGs exhibiting high 
PTRs. In particular, Methanomicrobiales sp. 21ysBP_11 
and Methanosarcina flavescens 22ysBP_46 are among 
the fast-growing archaea with PTR consistently above 2, 
making Methanomicrobiales sp. 21ysBP_11 a potential 
promising candidate for cultivation and isolation. In gen-
eral, most MAGs exhibit their highest replication rates 
within a 5  °C range (preferential temperature range), 
indicating that temperature tightly controls replication 
efficiency (Additional file  2: Fig.  7). In fact, mesophilic 
and thermophilic communities tend to present distinct 
composition and diversity, as also seen above. Yet, a rel-
evant number of bacterial and archaeal MAGs show 
their highest PTRs over a 20 °C window, suggesting that 
some species are able to better adapt across temperature 
regimes.

Numerous genomic variants delineate microbial 
population heterogeneity
To date, there is a lack of information in literature regard-
ing the genetic heterogeneity of AD-relevant species 
[74]. The presence of the same microbial species in reac-
tors characterized by different process parameters can 
allow to identify variants impacting the adaptation pro-
cess, as well as a more detailed characterization of spe-
cies at strain level. Variant identification was performed 
by aligning shotgun reads of each experiment back to 
the MAGs obtained from the binning process, and this 
approach led to the identification of 10.5 millions single 
nucleotide variants (SNVs). The high number of variants 
revealed a high genetic heterogeneity in the microbial 
population, and variants characterization allowed their 
classification as synonymous (60.5%), nonsynonymous 
(28.9%), intergenic (10.4%), and multigenic (0.02%). Of 
the 3,050 MAGs containing SNVs, only eight exhib-
ited more than 500,000 SNVs, two of which were the 
methanogenic archaea Methanothrix sp. 43zhSC_152 
and Methanoculleus sp. 52maCN_3230, which harbor 
938,000 and 661,000 SNVs, respectively (see Availabil-
ity of Data and Materials). The high number of variants 
observed in Methanothrix sp. 43zhSC_152 could be due 
to the fact that this MAG is widespread, being present in 
96 of the examined samples; possibly, the presence of this 
species in many reactors with highly different conditions 
have led to the differentiation of a large number of strains 

harboring genetic variants. On the other hand, the pres-
ence of Methanoculleus sp. 52maCN_3230 was limited 
to 23 mesophilic samples, and thus, the high number of 
genetic variants observed in this MAG could be due to 
different factors in comparison to Methanotrix.

In order to obtain a more reliable representation of the 
genomic variability, the number of SNV per MAG was 
normalized, both according to the genome length and 
to the number of samples where the MAG was identi-
fied with coverage higher than 1 (Fig.  6B). This analy-
sis highlighted Methanoculleus sp. 52maCN_3230 and 
Methanomicrobiales sp. 19jrsB_18 as outliers with more 
than 10,000 SNVs/Mbp per sample (Fig.  6B). This find-
ing is of particular interest because, while Methanoc-
ulleus sp. 52maCN_3230 is quite common in the AD 
samples, Methanomicrobiales sp. 19jrsB_18 was identi-
fied in two samples only. The genomic location of non-
synonymous variants identified in both methanogens 
allowed linking them to the gene and to the functional 
pathways. Interestingly, 2.5% of the Methanomicrobiales 
sp. 19jrsB_18 variants and 9.1% of the Methanoculleus 
sp. 52maCN_3230 variants were associated with core 
genes of the hydrogenotrophic methanogenesis, includ-
ing heterodisulfide reductase (hdr), methyl-coenzyme M 
reductase (mcr) and formylmethanofuran dehydrogenase 
(fwd). Overall, these results suggest that variants with a 
crucial role in the adaptation of methanogenic archaea to 
reactors operated in different conditions.

In order to determine if some phyla were statistically 
more impacted by variants, the taxonomic assignment 
of each MAG at phylum level was considered along 
with the number of SNVs/Mbp. Results of the Mann–
Whitney U-test on SNVs/Mbp distribution showed that 
eight phyla had a significant enrichment in the number 
of variants (p-value < 0.05) (Fig.  6C), with Candidatus 
Cloacimonetes (p = 0.0003), Euryarchaeota (p = 0.0025), 
Atribacterota (p = 0.0307) and Synergistetes (p = 0,0023), 
having a number higher than expected, and Firmicutes 
(p = 0.0380), Planctomycetes (p = 0.0145), Verrucomicro-
bia (p = 0.0043) and Lentisphaerae (p = 0.0015), having a 
lower number. In general, the results obtained for Eur-
yarchaeota suggest that methanogenic archaea are under 
a strong selective pressure and harbor a large amount of 
genetic variability. The metabolic roles of species belong-
ing to Candidatus Cloacimonetes and Synergistetes are 
still not completely clear, however, it was previously 
reported that some of them are characterized by ace-
togenesis [98], or can compete for acetate utilization with 
Methanosaeta [99].

To get a first glimpse on the strains composition, a phy-
logenetic analysis was conducted on Methanothrix sp. 
43zhSC_152, Methanothermobacter wolfeii 31mySI 58 and 
Candidatus Methanocullus thermohydrogenotrophicum 
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31mySI_10, the three archeal species with the high-
est number of MAGs. These three species have differ-
ent properties in the database: Methanotrix has a high 

number of MAGs and a worldwide distribution, the other 
two have less MAGs and are more abundant in Euro-
pean reactors (see Availability of Data and Materials). 

Fig. 6 Overview of variants distribution among different taxonomic groups. A Number of MAGs associated with each phylum. B Number 
of SNVs/Mbp in each phylum for MAGs with more than 100 SNVs; each dot represents a MAG. Results are reported for each phylum with more 
than five MAGs, while all the others are reported as “Other”. C Statistical analysis comparing the median SNV density calculated for each phylum 
and the average value reported for the global Biogas Microbiome database. Statistically significant results are marked with asterisks: “*”p <  = 0.05, 
“**”p <  = 0.01, “***”p <  = 0.001 and “****”p <  = 0.0001
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Phylogenetic analysis revealed a regional distribution of 
MAGs for Methanotrix with a distinct cluster of MAGs 
deriving from Chinese biogas plants. Interestingly, all the 
MAGs recovered for Methanothrix sp. 43zhSC_152 are 
mesophilic, and all the MAGs of M. wolfeii 31mySI 58 
are thermophilic, while Candidatus M. thermohydrog-
enotrophicum 31mySI_10 is more flexible and is present 
in some mesophilic and thermophilic samples (Addi-
tional file 2: Fig. 8). This finding contradicts previous data 
reporting this species only in thermophilic conditions 
[100], and suggests a different habit for this methanogen, 
which is able to adapt to mesophilic conditions as well. 
The temperature is not the main driver of strains differen-
tiation for Candidatus M. thermohydrogenotrophicum, 
while the high phylogenetic distance among some M. 
wolfeii and Ca. M. thermohydrogenotrophicum MAGs 
suggest a possible impact of environmental conditions on 
their strains differentiation. Two M. wolfeii MAGs iden-
tified in samples subjected to high  H2 concentrations, 
15tlH2_55 and 50dbBF_040, appeared quite distant from 
the others suggesting a selective pressure determined by 
environmental conditions.

Conclusions
In this study, the metagenomic characterization of the 
microbial species involved in the AD process has been 
expanded through the analysis of a large number of dif-
ferent reactor types operated under a range of conditions. 
In addition to expanding the number of species reported 
in the previous version of the Biogas Microbiome data-
base by almost three times, the analysis was focused on 
archaea, one of the crucial components of the microbi-
ome. The investigation of gene composition has led to a 
better characterization of archaea and their methano-
genic metabolism; however there still remains a degree 
of uncertainty in the automatic association between 
gene composition and phenotype, which will require 
the development of new investigation methods based on 
gene expression or machine learning. Despite this huge 
increase in the number of catalogued species, the great 
diversity of this biotechnological niche has yet to be fully 
explored, especially with regard to bacterial species.

Inspection of the phage repertoire provided a first over-
view and, through the analysis of the CRISPR elements, a 
first characterization of phage-bacterial interactions and 
co-evolution. This analysis allowed to build the first ver-
sion of the viral Biogas Microbiome database, currently 
represented only by DNA phages. The RNA phage frac-
tion still remains to be identified and will be one of the 
next targets. While the viral component characterisation 
proved to be extremely complex, the presence of a com-
bined database of prokaryotes and phages will certainly 
allow in the future a better tracking of their interactions 

with prokaryotes, also via means of cross-linking tech-
niques and co-occurrence.

Abundance of microbial species competing with meth-
anogens for  H2 utilization, such as SRBs, has highlighted 
how a well-characterized MAG database allows to better 
understand the impact of the microbiome in reducing the 
performance in terms of biogas production. Finally, the 
investigation of SNVs impacting the genes involved in 
key functional processes has laid the foundations to study 
the evolution of AD microbiome and its role in reactor 
performance, suggesting that methanogenic archaea are 
under strong selective pressure.
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