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Abstract

ncRNA genes, 25 pseudo genes, and 2 CRISPR repeats.

bacteria, Sugarcane

Klebsiella variicola strain DX120E (=CGMCC 1.14935) is an endophytic nitrogen-fixing bacterium isolated from sugarcane
crops grown in Guangxi, China and promotes sugarcane growth. Here we summarize the features of the strain DX120E
and describe its complete genome sequence. The genome contains one circular chromosome and two plasmids, and
contains 5,718,434 nucleotides with 57.1% GC content, 5,172 protein-coding genes, 25 rRNA genes, 87 tRNA genes, 7
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Introduction
The species Klebsiella variicola was classified in 2004
and consisted of clinical and plant-associated isolates
[1].The species K. singaporensis was classified in 2004
based on a single soil isolate [2] and was recently identi-
fied as a later junior heterotypic synonym of K. variicola
[3]. K. variicola is able to fix N, [1]. K variicola strain
At-22, one of the dominant bacteria in the fungus gar-
dens of leaf-cutter ants, provides nitrogen source by N,
fixation [4] and carbon source by degrading leaf poly-
mers to the ant-fungus symbiotic system [5]. Former K.
pneumoniae strain 342 (Kp342), which is phylogenomically
close to strain At-22 [6,7] and has been identified as a strain
of K. variicola [3], is able to colonize in plants and to pro-
vide small but critical amounts of fixed nitrogen to plant
hosts [8].

K. variicola strain DX120E was isolated from roots of
sugarcane grown in Guangxi, the major sugarcane produc-
tion area in China [9]. It is able to colonize in sugarcane
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roots and shoots, to fix N, in association with sugarcane
plants, and to promote sugarcane growth [10], and
thus shows a potential as a biofertilizer. Here we
present a summary of the features of the K. variicola
strain DX120E (=CGMCC 1.14935) and its complete
genome sequence, and thus provide a genetic back-
ground to understand its endophytic lifestyle, plant
growth-promoting potentials, and similarities and
differences to other plant-associated and clinical K.
variicola isolates.

Organism information

Classification and general features

K variicola strain DX120E is a Gram-negative, non-
spore-forming, non-motile rod (Figure 1). It grows aerobic-
ally but reduces N, to NHj3 at a low pO,. It is able to grow
and fix N, on media containing 10% (w/v) cane sugar or
sucrose. It forms circular, convex, smooth colonies with en-
tire margins on the solid high-sugar content media. It
grows best around 30°C and pH 7 (Table 1).

Phylogenetic analysis of the 16S rRNA gene sequences
from strain DX120E and strain Kp342, the type strains
of the species in the genera Klebsiella and Raoultella,
and the type strain of the type species of the type
genus of the family Enterobacteriaceae (Escherichia
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Figure 1 Morphology of Klebsiella variicola DX120E cells.
Transmission electron micrograph (left) shows a DX120E cell stained
by uranyl acetate; laser scanning confocal micrograph (right) shows
DX120E cells tagged by green fluorescent protein. The scale bars
represent 1 pym.

coli ATCC11775%) showed that K. variicola strains
(type strain F2R9, Kp342, DX120E and LX3) were most
closely related and formed a monophyletic group with K
pneumoniae and K. quasipneumoniae (Figure 2).

Like typical members in the genera Klebsiella, K. variicola
DX120E utilizes alanine, arabinose, D-arabitol, L-aspartate,
D-cellobiose, citrate, D-fructose, L-fucose, D-galactose,
gentiobiose, glucose, glycerol, myo-inositol, lactate, lactose,
malate, maltose, D-mannitol, D-mannose, D-melibiose,
L-proline, D-raffinose, L-rhamnose, L-serine, D-sorbitol,
sucrose, and D-trehalose [23]. DX120E does not utilize ado-
nitol (also known as ribitol), which is a distinctive charac-
teristic from K. pneumoniae [1].

Genome sequencing information

Genome project history

K. variicola DX120E was selected for sequencing be-
cause it is a plant growth-promoting endophyte [10]. Its
16S rRNA gene sequence is deposited in GenBank under
the accession number HQ204296. Its genome sequences
are deposited in GenBank under the accession numbers
CP009274, CP009275, and CP009276. A summary of the
genome sequencing project information and its associ-
ation with MIGS version 2.0 [11] is shown in Table 2.

Growth conditions and DNA isolation

K. variicola DX120E was grown in liquid Luria-Bertani
(LB) medium at 30°C to early stationary phase. The
genome DNA was extracted from the cells by using a
TIANamp bacterial DNA kit (Tiangen Biotech, Beijing,
China). DNA quality and quantity were determined
with a Nanodrop spectrometer (Thermo Scientific,
Wilmington, USA).

Genome sequencing and assembly
The genome DNA of K variicola DX120E was con-
structed into a 4 — 10 kb insert library and sequenced by
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Table 1 Classification and general features of Klebsiella
variicola strain DX120E according to the MIGS
recommendations [11]

MIGS ID Property Term Evidence
code®
Classification  Domain Bacteria TAS [12]
Phylum Proteobacteria TAS [13]
Class Gammaproteobacteria TAS
[14,15]
Order Enterobacteriales TAS [16]
Family Enterobacteriaceae TAS
[17,18]
Genus Klebsiella TAS
[18,19]
Species Klebsiella variicola TAS
[1,20]
Type strain:F2R9" TAS 1]
(ATCC BAA-830=DSM 15968)
Gram stain Negative IDA
Cell shape Rod IDA
Motility Non-motile IDA
Sporulation  Non-sporulating IDA
Temperature  4-40°C IDA
range
Optimum 28-32°C IDA
temperature
pH range; 3.5-85;70 IDA
Optimum
Carbon Sucrose, citrate, fructose, IDA
source galactose, glucose, lactose, malate,
maltose, mannitol, mannose,
rhamnose, & sorbitol
MIGS-6 Habitat Soil, plants IDA
MIGS-6.3  Salinity 0 - 5% NaCl (w/v) IDA
MIGS-22  Oxygen Aerobic IDA
requirement
MIGS-15  Biotic Free-living, endophytic IDA
relationship
MIGS-14  Pathogenicity Not reported
MIGS-4  Geographic  Daxin, Guangxi, China TAS [9]
location
MIGS-5 Sample 2008 TAS [9]
collection
MIGS-4.1  Longitude 107°20'E NAS
MIGS42 | atitude 22°80N NAS
MIGS-4.3  Depth 0.1 = 0.2 m below the surface IDA
MIGS-44  Altitude 320m NAS

®Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e, not directly observed for the living, isolated sample, but based on a generally
accepted property for the species, or anecdotal evidence). These evidence codes
are from the Gene Ontology project [21].
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Figure 2 Phylogenetic tree of 165 rRNA gene sequences showing the position of Klebsiella variicola strain DX120E (e). Escherichia coli ATCC 11775 is
used as an outgroup. The sequences were aligned with the CLUSTAL W program and were constructed with the neighbor-joining algorithm and the
Kimura 2-parameter model integrated in the MEGA 5.2 program [22]. The phylogenetic tree was tested with 1,000 bootstrap replicates. Bootstrap values
are shown at the nodes. The GenBank accession numbers of the sequences are indicated in parentheses. The scale bar represents a 1% nucleotide
sequence divergence. Note that the genome of strain DX120E, F2R9" (DSM 15968"), or Kp342 contains eight copies of 165 rRNA genes; these gene
sequences are generally not identical but phylogenetically grouped together (data not shown). The sequence of DX120E (HQ204296) used to construct

the phylogenetic tree is identical to the sequence of locus tag KR75_09260 (CP009274:1935034-1936587).

the Pacific Biosciences’ (PacBio) Single Molecule, Real-
Time (SMRT) sequencing technology [24] at the Duke
University Genome Sequencing & Analysis Core Resource.
Sequencing was run on single SMRT cell and resulted in
91,190 high-quality filtered reads with an average length of

Table 2 Genome sequencing project information for
Klebsiella variicola strain DX120E

MIGS ID Property Term
MIGS-31 Finishing quality Finished
MIGS-28 Libraries used PacBio 4 —10Kb library
lllumina 500 bp library
MIGS-29 Sequencing platforms PacBio RS Il
lllumina HiSeq 2000
MIGS-31.2 Fold coverage PacBio 96 x
lllumina 106 x
MIGS-30 Assemblers HGAP in smrtanalysis-
2.1.1SOAPdenovo 2.04
MIGS-32 Gene calling method GeneMarkS+
Locus Tag KR75
Genbank ID CP009274 (Chromosome)
CP009275 (plasmid pKV1)
CP009276 (plasmid pKVv2)
Genbank Date of Release January 1, 2015
GOLD ID Gi0078577
BIOPROJECT PRINA259590
MIGS 13 Source Material Identifier CGMCC 1.14935

Project relevance

Agriculture, plant-microbe
interactions

6,196 bp. High-quality read bases were assembled by the
Hierarchical Genome Assembly Process (HGAP) with
smrtanalysis-2.1.1. The resulting draft genome consisted of
5,719,400 nucleotides and 5 contigs.

The genome DNA of K. variicola DX120E was also
constructed into a 500-bp insert library and sequenced
by an Illumina HiSeq 2000 sequencing system at BGI
Tech, Shenzhen, China. The Ilumina HiSeq 2000 se-
quencing resulted in 6,699,933 high-quality filtered reads
with an average length of 90 bp. The sequencing data
were assembled by the Short Oligonucleotide Analysis
Package (SOAPdenovo 2.04) [25]. The resulting draft
genome consisted of 5,695,362 nucleotides and 27
scaffolds.

The two draft genomes were aligned by Mauve [26].
The Illumina scaffold 1 bridged the PacBio contig 1 and
contig 2; the Illumina scaffold 3 bridged the PacBio con-
tig 1, contig 2, and contig 3; the Illumina scaffold 11
bridged the circular PacBio contig 4; the Illumina scaffold
16 bridged the circular PacBio contig 5. The genome se-
quencing was completed by PCR and Sanger sequencing to
close the contig gaps of the PacBio-sequenced genome.

Table 3 Summary of genome: one chromosome and two
plasmids

Label Size Topology INSDC RefSeq ID
(bp) identifier

Chromosome 5,501,013 Circular CP009274.1 NZ_CP009274.1

Plasmid pKV1 162,706  Circular CP009275.1 NZ_CP009275.1

Plasmid pKVv2 54,715  Circular CP009276.1 NZ_CP009276.1
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Figure 3 Circular map of the chromosome and plasmids of Klebsiella variicola strain DX120E. From outside to the center: genes on forward
strand, genes on reverse strand, GC content, GC skew. Circular map was generated by CGView [31].
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Table 4 Genome statistics

Attribute Value % of total
Genome size (bp) 5718434 100
DNA coding (bp) 4,930,539 86.22
DNA G+ C (bp) 3,265,303 57.10
DNA scaffolds 3 100
Total genes 5316 100
Protein-coding genes 5172 97.29
RNA genes 112 212
Pseudo genes 25 047
Genes with function prediction 4,623 87.00
Genes assigned to COGs 4,398 8273
Genes with Pfam domains 4,631 87.11
Genes with signal peptides 526 9.89
Genes with transmembrane helices 1,289 24.25
CRISPR repeats 2 0.04
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Genome annotation

Automated genome annotation was completed by the
NCBI Prokaryotic Genome Annotation Pipeline. Prod-
uct description annotations were obtained by search-
ing against the KEGG, InterPro, and COG databases.
Genes with signal peptides were predicted by SignalP
[27]. Genes with transmembrane helices were pre-
dicted by TMHMM [28]. Genes for tRNA were found
by tRNAScanSE [29]. Ribosomal RNAs were found by
BLASTN vs. ribosomal RNA databases; 5S rRNA hits
were further refined by Cmsearch [30]. Thirteen dis-
rupted genes were replaced by the complete gene
sequences obtained from the Illumina HiSeq 2000
sequencing.

Genome properties

The genome of K. variicola DX120E contains one circu-
lar chromosome and two plasmids (pKV1 and pKV2)
(Table 3, Figure 3). The chromosome contains 5,501,013
nucleotides with 57.3% G + C content. The plasmid
pKV1 contains 162,706 nucleotides with 50.7% G + C
content. The plasmid pKV2 contains 54,715 nucleotides
with 53.1% G + C content. The genome contains 5,316

Table 5 Number of genes associated with general COG functional categories

Code Value % age Description
J 198 3.83 Translation, ribosomal structure and biogenesis
1 0.02 RNA processing and modification

K 489 945 Transcription
L 159 307 Replication, recombination and repair
B 1 0.02 Chromatin structure and dynamics
D 43 0.83 Cell cycle control, cell division, chromosomepartitioning
\Y 71 137 Defense mechanisms
T 235 454 Signal transduction mechanisms
M 260 503 Cell wall/membrane biogenesis
N 62 1.20 Cell motility
U 1M1 2.15 Intracellular trafficking and secretion
(@] 158 3.05 Posttranslational modification, protein turnover, chaperones
C 342 6.61 Energy production and conversion
G 583 11.27 Carbohydrate transport and metabolism
E 538 1040 Amino acid transport and metabolism
F 102 197 Nucleotide transport and metabolism
H 215 4.16 Coenzyme transport and metabolism
I 130 2.51 Lipid transport and metabolism
P 344 6.65 Inorganic ion transport and metabolism
Q 112 217 Secondary metabolites biosynthesis, transport and catabolism
R 541 1046 General function prediction only
S 414 8.00 Function unknown

774 14.97 Not in COGs

The total is based on the total number of protein coding genes in the genome.
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predicted genes, 5,172 protein-coding genes, 119 RNA
genes (25 rRNA genes, 87 tRNA genes, and 7 ncRNA
genes), 25 pseudo genes, and 2 CRISPR repeats. The
chromosome, pKV1, and pKV2 contain 4990, 131, and
51 protein-coding genes with coding density of 87.3%,
74.2%, and 83.9%, respectively. Among the 5,172
protein-coding genes, 4,511 genes (87.2%) have been
assigned functions, while 661 genes (12.8%) have been
annotated as hypothetical or unknown proteins (Table 4).
The distribution of genes into COGs functional categor-
ies is presented in Table 5.

Insights from the genome sequence

The genome of K. variicola DX120E contains genes
contributing to multiple plant-beneficial functions. In
accordance with previously detected N, fixation,
indole-3-acetic acid production, siderophore produc-
tion, and phosphate solubilization [9], the genome of
K. variicola DX120E contains nif cluster, indole-3-
pyruvate decarboxylase, siderophore enterobactin syn-
thesis genes (entABCDEF) and enterobactin exporter
gene (entS), and pyrroloquinoline quinone synthesis
genes (pqqBCDEF) contributing to these functions.
Moreover, the genome of K. variicola DX120E con-
tains the budABC operon for the synthesis of acetoin
and 2,3-butanediol [32], and thus may induce plant
systemic resistance to pathogens [33].

DX120E contains plasmids similar to those in
Klebsiella relatives. The plasmid pKV1 is most similar
to the plasmid pKp5-1 of the K. pneumoniae strain
5-1 (Kp5-1) [34] with a 97% identity of 56% coverage
(Additional file 1: Figure S1); the similar regions
mainly encode transposase/recombinases and pro-
teins functioning in plasmid replication, partitioning,
and conjugal transfer. The plasmid pKV2 is most
similar to the plasmid pKOXMI1C of the K. oxytoca
strain M1 with a 96% identity of 89% coverage
(Additional file 2: Figure S2); the similar regions
mainly encode proteins for plasmid partitioning and
phage functions.

The genome of K. variicola DX120E has high aver-
age nucleotide identities (ANI) [35] about 99% to
the available genomes of K. variicola strains DSM
15968%, At-22, Bz19, and Kp342. Bz19 was isolated
from faeces of a hospitalized patient [6]. The plant-
beneficial strain Kp342 is able to infect mouse or-
gans, although it is less virulent than typical clinical
K. pneumoniae isolates [36]. Kp5-1, which has the
plasmid pKp5-1 close to pKV1, is a cotton pathogen
causing boll-rot disease [34]. The genome of strain
Kp5-1 has ANI values about 99% to the genomes of
the known K. variicola strains and thus belongs to
K. variicola. These drive concerns about potential
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pathogenicity of DX120E to animals and plants.
Therefore, DX120E’s pathogenic potentials to animals
and plants should be determined before using
DX120E as a biofertilizer in the field.

Conclusions

The complete genome sequence of K. variicola DX120E
provides the genetic background for understanding
the bacterial mechanisms to adapt endophytic life and
to promote plant growth. The high degree of whole-
genome and plasmid similarities between DX120E and
phytopathogenic and clinical Klebsiella isolates suggests
the risk of using DX120E as a biofertilizer. The available
genome sequences of the K. variicola strains allow an
in-depth comparative analysis to understand the subtle
pathogenicity mechanisms of the pathogens and to
predict pathogenic risks for the plant-beneficial strain
DX120E.

Additional files

Additional file 1: Figure S1. Comparison of plasmid pKV1 of Klebsiella
variicola strain DX120E with plasmid pKp5-1 of K. pneumoniae strain 5-1.

Additional file 2: Figure S2. Comparison of plasmid pKV2 of Klebsiella
variicola strain DX120E with plasmid pKOXM1C of K. oxytoca strain M1.
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