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Genome sequence of Clostridium sporogenes
DSM 795T, an amino acid-degrading, nontoxic
surrogate of neurotoxin-producing Clostridium
botulinum
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Abstract

Clostridium sporogenes DSM 795 is the type strain of the species Clostridium sporogenes, first described by Metchnikoff in
1908. It is a Gram-positive, rod-shaped, anaerobic bacterium isolated from human faeces and belongs to the proteolytic
branch of clostridia. C. sporogenes attracts special interest because of its potential use in a bacterial therapy for certain
cancer types.
Genome sequencing and annotation revealed several gene clusters coding for proteins involved in anaerobic degradation
of amino acids, such as glycine and betaine via Stickland reaction. Genome comparison showed that C. sporogenes is
closely related to C. botulinum. The genome of C. sporogenes DSM 795 consists of a circular chromosome of 4.1 Mb
with an overall GC content of 27.81 mol% harboring 3,744 protein-coding genes, and 80 RNAs.
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Introduction
C. sporogenes was isolated from human faeces [1-3], but
can also be found in soil and marine or fresh water sedi-
ments [4-7]. C. sporogenes strain DSM 795 [8] serves as
type strain for this species and as a consequence was
chosen for whole genome sequencing.
Because C. sporogenes is closely related to C. botulinum

group I strains, it is used as a non-toxic surrogate for this
common food-borne pathogen. 16S rDNA sequencing re-
vealed a 99.7% sequence similarity to proteolytic C. botulinum
strains of serotypes A, B, and F [9]. In this context, the
genome of C. sporogenes strain PA 3679 was sequenced
and a draft sequence published in 2012 [10]. C. sporogenes
can be isolated from infections, but does not play a prom-
inent role as a pathogen. Only few clinical cases are re-
ported, in which this species was found to participate.
These cases include epynema, soft tissue abscesses, septic
arthritis, or gas gangrene [11-16].
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Requiring an anaerobic habitat, C. sporogenes is known to
specifically colonize hypoxic areas of solid tumors. In 1964,
Möse and co-workers demonstrated tumor colonization
resulting in tumor lysis after intravenous application of
C. butyricum M-55 in mice carrying Ehrlich carcinomas
[17]. The respective strain was subsequently reclassified as
C. oncolyticum and finally as C. sporogenes ATCC 13732.
They also demonstrated that C. sporogenes spores are
immunologically inert by injecting them into themselves
[18]. As an excellent tumor colonizer, C. sporogenes bears
promising therapeutic potential for cancer therapy [19].
With CFU numbers up to 2 × 108 per gram of tumor tis-
sue, C. sporogenes outperforms saccharolytic clostridia such
as C. beijerinckii and C. acetobutylicum by far, as the latter
reach only CFU numbers of 105-106 per gram of tumor
tissue [20-22].
Restricted to the inner core of the tumor, clostridia

cannot lyse the well-oxygenated outer rim of tumor
cells, which remains viable and unaffected. Therefore,
treatment with clostridial spores alone is not sufficient
for complete tumor eradication. Several attempts have
been made to genetically modify C. sporogenes for pro-
duction of therapeutic proteins or pro-drug converting
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Table 1 Classification and general features of Clostridium
sporogenes DSM 795T

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria [26]

Phylum Firmicutes [27-29]

Class Clostridia [30,31]

Order Clostridiales [32,33]

Family Clostridiaceae [32,34]

Genus Clostridium [32,35,36]

Species Clostridium
sporogenes

[8,32,37,38]

Type strain DSM 795 T [8]

Gram stain positive IDA

Cell shape rod-shaped IDA

Motility motile [39]

Sporulation sporulating IDA

Temperature range mesophilic, 25–45°C [39]

Optimum temperature 30-40°C IDA, [39]

pH range; Optimum 5.7-8.5; 7 [39], IDA

Carbon source amino acids [40-43]

MIGS-6 Habitat human and animal
gut, soil, marine
and fresh water
sediments

[4-7,44,45]

MIGS-6.3 Salinity growth in 2YT medium IDA

MIGS-22 Oxygen requirement anaerobic IDA

MIGS-15 Biotic relationship free living IDA

MIGS-14 Pathogenicity low [39]

MIGS-4 Geographic location Not reported

MIGS-5 Sample collection Not reported

MIGS-4.1 Latitude Not reported

MIGS-4.2 Longitude Not reproted

MIGS-4.4 Altitude Not reproted
aEvidence codes - IDA: Inferred from Direct Assay. Evidence codes from the
Gene Ontology project [46].
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enzymes. The latter catalyze the conversion of innocuous
pro-drug molecules into their active, cytotoxic form. This
reaction takes place directly in the tumor allowing systemic
application of higher drug concentrations and reduction of
side effects [20]. Among others, cytosine deaminase and
nitroreductase were used for this purpose. A recombinant
C. sporogenes DSM 795 mutant expressing cytosine deami-
nase induced growth delay of tumors in a mouse model
after application of spores and the pro-drug 5-fluorouracil
[20]. Also, C. sporogenes mutants heterologously expressing
nitroreductase exhibited a significant antitumor efficacy in
different in vivo tumor models [23-25].

Organism information
Classification and features
C. sporogenes has been subject of extensive studies since
the 1930s. Characteristic features of C. sporogenes DSM
795 are listed in Table 1.
C. sporogenes belongs to the proteolytic branch of clos-

tridia capable of amino acid fermentation. No carbohydrates
are required for growth, although addition can have a stimu-
lating effect [47]. Amino acids are degraded via the Stickland
reaction for energy conservation [40-43]. Required media
composition and further nutritional demands have already
been elucidated [48-55]. Growth can be obtained anaerobic-
ally in complex medium, but also several minimal media
supplemented with amino acids are described [52,53].
The Gram-positive nature of C. sporogenes was con-

firmed by Gram staining (Figure 1). Cell size can vary
between 0.3-1.4 × 1.3-16.0 μm [39].
A scanning electron microscopy image of C. sporogenes

DSM 795 cell culture is shown in Figure 2. Several cell
stages are depicted: vegetative dividing and sporulating
cells and a mature spore (upper left part of the image).
Transmission electron microscopy images (Figure 3)

reveal membrane organizations and cell compartments
of a dividing cell (Figure 3A), sporulating cells (Figure 3B
and C), and a spore (Figure 3D).
C. sporogenes is considered as the non-toxic surrogate of

neurotoxin producer Clostridium botulinum. Additional
file 1: Table S1 provides an overview of all C. botulinum
strains mentioned in this study. Generally, they are
assigned to four groups (I-IV) based on their physiologic
characteristics [56]. Strains belonging to group I are proteo-
lytic [57]. They are further classified into serotypes A-F due
to different types of the produced botulinum neurotoxin
with several subtypes existing [56].
Phylogenetic relation of C. sporogenes DSM 795 to

C. botulinum strains and other clostridia was investi-
gated by calculation of a phylogenetic tree using 16S
rDNA sequences (Figure 4). C. sporogenes DSM 795 po-
sitions itself in close relationship to proteolytic C. botu-
linum strains of types A, B, and F, confirming previous
studies [9]. Clostridial 16S rRNA reference sequences were
retrieved from GenBank (NCBI database). At first, these se-
quences were aligned with MAFFT version 7 using default
settings except for “globalpair” in fast Fourier transform
[58]. Then, based on the multiple sequence alignment, a
phylogenetic tree was inferred with the program MrBayes
3.1.2 [59] using the default settings.
C. sporogenes DSM 795 exhibits β-hemolysis on sheep

and human erythrocytes (data not shown) due to produc-
tion of clostridiolysin S [60]. Further enzymes produced
are desoxyribonuclease, thiaminase, chitinase, kininase,
L-methioninase, hyaluronate lyase, and superoxide dis-
mutase [39].
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Figure 1 Gram staining of Gram-positive C. sporogenes DSM 795. Scale bar represents 5 μm.
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In general, C. sporogenes is resistant to streptomycin,
neomycin, kanamycin, tobramycin, and amikamycin and
susceptible to penicillin G, metronidazole, tinidazole, chlor-
amphenicol, tetracycline, and doxycycline [39]. C. sporogenes
strain DSM 795 is additionally susceptible to thiamphenicol
and erythromycin or clarithromycin in working concentra-
tions of 15 μg/ml and 2.5 μg/ml, respectively.

Genome sequencing information
Genome project history
C. sporogenes DSM 795 was chosen for whole genome se-
quencing as it is the type strain of this species. Further-
more, it attracts special interest because of its potential
Figure 2 Scanning electron microscopy image of C. sporogenes DSM 795.
use in tumor therapy and it is known as nontoxic surro-
gate of the food-borne and neurotoxin-producing patho-
gen C. botulinum. The sequencing of C. sporogenes DSM
795 genomic DNA delivered a high-quality draft genome
sequence comprising 1 scaffold and 16 contigs. The
sequence is deposited in GenBank database under the
accession JFBQ00000000. A summary of the project in-
formation is listed in Table 2.

Growth conditions and genomic DNA preparation
C. sporogenes DSM 795 was cultivated in anaerobic 2YT
medium containing 3% (w/v) tryptone, 2% (w/v) yeast
extract, and 8.7 mM sodium thioglycolate ([61], mod.).
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Figure 3 Transmission electron microscopy image of C. sporogenes DSM 795; A: dividing cell; B, C: sporulating cells; D: spore; scale bars
represent 1 μm.
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For genomic DNA preparation via the hot phenol
method, an overnight culture incubated at 37°C was
used. The procedure was carried out as described previ-
ously [62]. Redistilled and in TE buffer equilibrated phe-
nol (pH 7.5-8) was used for the extraction.
Electron microscopic images were taken from an over-

night and a sporulating culture (10 d, 30 °C) of C. sporo-
genes. SEM and TEM cell samples were washed 3 times
with PBS and fixed with 1 vol 5% (v/v) glutaraldehyde in
0.2 M phosphate buffer pH 7.3 containing 2% (w/v) su-
crose. Further treatment and visualization were con-
ducted by the Central Facility for Electron Microscopy,
University of Ulm.

Genome sequencing and assembly
Whole-genome sequencing of C. sporogenes was per-
formed with a combined approach using the 454 GS-FLX
Titanium XL system (Titanium GS70 chemistry, Roche
Life Science, Mannheim, Germany), the Genome Analyzer
II, and the MiSeq (Illumina, San Diego, CA). Shotgun
libraries were prepared according to the manufacturer’s
protocols, resulting in 126,343 reads for 454 shotgun se-
quencing (11.53 × coverage) and 1,445,024 112-bp and
5,654,920 150-bp paired-end Illumina reads (263.72 ×
coverage). For the initial hybrid de novo assembly with
MIRA 3.4 [63] and Newbler 2.8 (Roche Life Science,
Mannheim, Germany), we used all of the 454 shotgun
reads, 1,445,024 112-bp and 554,976 150-bp paired-end
Illumina reads. The final assembly was composed of 298
contigs with an average coverage of 62.78. For scaffolding
we used the Move Contigs tool of the Mauve Genome
Alignment Software [64]. Additionally, contigs that could
not be ordered with Mauve were examined via Gene
Ortholog Neighborhoods based on bidirectional best
hits implemented at the IMG-ER (Integrated Microbial
Genomes-Expert Review) system [65,66]. For contig or-
dering tasks, the genomes of C. sporogenes ATCC 15579
(ABKW00000000), C. botulinum ATCC 3502 (AM412317,
AM412318), and C. botulinum BoNT/B1 Okra (CP000939)
were used as references. Sequence gaps were closed in the
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Figure 4 Phylogenetic tree of C. sporogenes DSM 795 based on 16S rDNA gene sequences. Estimation is based on Bayesian inference and
MAFFT alignment.
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Gap4 (v.4.11) software of the Staden Package [67] by PCR-
based techniques and primer walking with conventional
Sanger sequencing, using BigDye 3.0 chemistry on an
ABI3730XL capillary sequencer (Applied Biosystems, Life
Technologies GmbH, Darmstadt, Germany). The resulting
draft genome is composed of 16 contigs in 1 scaffold.

Genome annotation
The software tools YACOP and Glimmer [68] were used
for automatic gene prediction, while identification of
rRNA and tRNA genes was performed with RNAmmer
and tRNAscan, respectively [69,70]. Automatic annotation
was carried out with the IMG-ER (Integrated Microbial
Genomes-Expert Review) system [65,66], but annotation
was afterwards manually curated by employing BLASTP
and the Swiss-Prot, TrEMBL, and InterPro databases [71].
Genome properties
The draft genome of C. sporogenes DSM 795 consists of
one scaffold containing 16 contigs representing one cir-
cular chromosome with a size of 4.1 Mb and with an
overall GC content of 27.81 mol%. 3,832 genes are
encoded, from which 3,744 were putative protein coding,
8 were pseudo and 80 RNAs (10 rRNA and 70 tRNA
genes). 77.51% of encoding genes could be assigned to a
putative function while the remaining 843 genes were
annotated as hypothetical proteins. The genome harbors
6 different selenocysteine-containing proteins, even
SelD, the selenide water dikinase (CSPO_9c05010), ne-
cessary for incorporation of selenocysteine into proteins,
contains one selenocysteine. 4 of the remaining gaps
represent rRNA gene clusters and there are some indica-
tions in the draft genome that at least 4 of these clusters
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Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality Improved high-quality draft

MIGS-28 Libraries used Two genomic libraries: 454
pyrosequencing shotgun
library, Illumina paired-end
library (1 kb insert size)

MIGS-29 Sequencing platforms 454 GS FLX Titanium, Illumina
GAII and MiSeq

MIGS-31.2 Fold coverage 11.53 × 454, 51.25 × Illumina

MIGS-30 Assemblers Newbler 2.8, MIRA 3.4

MIGS-32 Gene calling method YACOP, Glimmer

Locus Tag CSPO

Genbank ID JFBQ00000000

GenBank Date of Release 2014-05-06

GOLD ID Gi0006347

BIOPROJCT 239205

MIGS-13 Source material identifier DSM 795

Project relevance medical, butanol formation,
amino acid degradation

Table 4 Number of genes associated with the general
COG functional categories

Code Value % Age Description

J 167 6.07 Translation, ribosomal structure and biogenesis

A n. a. n. a. RNA processing and modification

K 290 10.55 Transcription

L 110 4.00 Replication, recombination and repair

B n. a. n. a. Chromatin structure and dynamics

D 28 1.02 Cell cycle control, cell division, chromosome
partitioning

V 99 3.60 Defense mechanisms

T 194 7.05 Signal transduction mechanisms

M 130 4.73 Cell wall/membrane biogenesis

N 72 2.62 Cell motility

U 34 1.24 Intracellular trafficking and secretion, and
vesicular transport

O 81 2.95 Posttranslational modification, protein
turnover, chaperones

C 156 5.67 Energy production and conversion

G 131 4.76 Carbohydrate transport and metabolism

E 259 9.42 Amino acid transport and metabolism

F 78 2.84 Nucleotide transport and metabolism

H 124 4.51 Coenzyme transport and metabolism

I 49 1.78 Lipid transport and metabolism

P 164 5.96 Inorganic ion transport and metabolism

Q 27 0.98 Secondary metabolites biosynthesis,
transport and catabolism

R 323 11.75 General function prediction only
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are double, triple, or even fivefold clusters. Statistics and
genome properties are listed in Table 3.

Insights from the genome sequence
Of all protein coding genes 2,456 (64.09%) could be
assigned to at least one COG category [72]; Table 4 shows
the distribution into these functional groups. The two most
abundant categories were “general function prediction”
Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 4,106,655 100.00%

DNA coding (bp) 3,416,102 83.18%

DNA G + C (bp) 1,142,131 27.81%

Number of scaffolds 16

Total genes 3,832 100.00%

Protein coding genes 3,752 97.91%

RNA genes 80 2.09%

Pseudo genes 8a

Genes in internal clusters 2,960 76.77%

Genes with function prediction 2,942 77.51%

Genes assigned to COGs 2,456 64.09%

Genes with Pfam domains 3,139 81.92%

Genes with signal peptides 176 4.59%

Genes with transmembrane helices 1,059 27.64%

CRISPR repeats 0
aPseudo genes may also be counted as protein coding or RNA genes, so are
not additive under total gene count.

S 234 8.51 Function unknown

- 1,376 35.91 Not in COGs
and “transcription”, to which 11.75% and 10.55%, respect-
ively, could be assigned to, followed by “amino acid trans-
port and metabolism”, “function unknown”, “signal
transduction and mechanisms”, and “energy production
and conversion” with 9.42%, 8.51%, 7.05% and 6.07%, re-
spectively, of all protein coding genes.
9.42% of all protein coding genes were assigned to the

COG category “amino acid transport and metabolism”,
which indicates that utilization of amino acids plays an im-
portant role in the metabolism of C. sporogenes. Supporting
this assumption, we identified several clusters coding for
proteins involved in anaerobic amino acid degradation by
the Stickland reaction [40-43]. One example is a gene clus-
ter coding for several subunits of a proline reductase
(CSPO_9c00030-CSPO_9c00180). This cluster contains
two selenocysteine-containing proteins, the gamma sub-
unit PrdB (CSPO_9c00070), and PrdC, a protein with high
sequence homology to the C-subunit of Rnf-complex
(CSPO_9c00100). The cluster shows a similar organization
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as in C. sticklandii [73,74], except for the additional pres-
ence of a transposase (CSPO_9c00150), a second copy
of PrdH2 (CSPO_9c00160) and a non-selenocysteine-
containing version of PrdC (CSPO_9c00170). Further-
more, we identified gene clusters for the degradation of
glycine, another one for its derivative betaine (N,N,N-
trimethylglycine), and a cluster involved in selenocysteine
incorporation into proteins (Figure 5).
In contrast to Sporomusa ovata [76], in which all

above mentioned gene are organized in one large cluster,
the clusters identified in the genomes of C. sporogenes,
C. botulinum ATCC 3502 and Eubacterium acidamino-
philum al-2 DSM 3953 are localized in separate regions
of the genomes. This is also true for the selenocysteine-
incorporation genes (selABC [lilac tones]) as well as the Sec-
specific tRNA (trnU [dark lilac]) as shown in Figure 5. The
gene clusters of C. sporogenes show identical organization
to those identified in C. botulinum and show only slightly
differences to those found in E. acidaminophilum [77],
whereas genes coding for the betaine-specific reductase is
missing in the genome of C. botulinum. The glycine reduc-
tase cluster of C. sporogenes lacks the second copy of grdA
[orange] in comparison to E. acidaminophilum, but con-
tains two paralogs for thioredoxin reductases of the thiore-
doxin system [blue tones]. These two paralogs could also be
identified in the cluster found in C. botulinum. In C. sporo-
genes the gene cluster coding for the betaine reductase
(grdRIH [brown tones]) is much shorter than E. acidamino-
philum’s cluster, as genes coding for thioredoxin (trxA [light
blue]) and thioredoxin reductase (trxB [dark blue]) as well
as the two genes coding for the C-subunit of the reductase
Figure 5 Tblastx comparison of glycine-, betaine-reductase and the selABC
E. acidaminophilum al-2 DSM 3953 and S. ovata H1 DSM 2662: An E-value c
Easyfig [75]. The analyzed gene clusters are localized in different regions in
well as E. acidaminophilum al-2 DSM 3953. In S. ovata one genomic region in
(CSPO_4c08160-CSPO_4c08230), betaine-reductase (CSPO_4c10340-CSPO_4c
indicated with red vertical lines.
(grdCD [green tones]) are not present. The 32.5 kb com-
prising cluster of S. ovata includes genes coding for the
glycine-specific subunit (grdEB [red tones]), genes coding
for the betaine-specific subunit (grdIH [brown tones]),
two copies of genes coding for the substrate-unspecific
subunit C (grdCD [green tones]), and two copies coding
for the thioredoxin and a thioredoxin reductase (trxAB
[blue tones]). All these genes show identical clustering as
identified in the genome of C. sporogenes. The genes coding
for proteins necessary for the selenocysteine-incorporation
show a different arrangement as identified in C. sporogenes,
C. botulinum and E. acidaminophilum, where these genes
are organized in a selABCtrnU operon [lilac tones] [78]. It
is also visible in Figure 5 that genes coding for glycine-
specific subunit (grdBE [red tones]) show high sequence
homology to genes coding for betaine-specific subunit
(grdIH brown tones]).
C. sporogenes is able to produce solvents such as

ethanol and butanol [79,80]. The genome of C. sporo-
genes DSM 795 harbors the complete set of genes necessary
for glycolysis (phosphoglucomutase, glucose-6-phophate
isomerase, 6-phopsphofructokinase, 1-phosphofructokinase,
fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate
dehydrogenase, aldehyde:ferredoxin oxidoreductase,
glyceraldehyde-3-phosphate dehydrogenase, phosphoglycer-
ate kinase, phosphoglycerate mutase, enolase, pyruvate
kinase, pyruvate dehydrogenase) as well as aldehyde de-
hydrogenase and several bifunctional aldehyde-alcohol de-
hydrogenases, essential for ethanol production. Genes
coding for key enzymes of butanol fermentation, such as
butyryl-CoA dehydrogenase, acetyl-CoA acetyltransferase,
gene cluster of C. sporogenes DSM 795 with C. botulinum ATCC 3502,
utoff of 1e-10 was used and visualization was done with the program
the genomes of C. sporogenes DSM 795, C. botulinum ATCC 3502 as
cludes all three gene clusters. Borders between the glycine-reductase
10360) and selABCtrnU (CSPO_9c04980-CSPO_9c05010) gene cluster are
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3-hydroxybutyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA
dehydratase, several alcohol dehydrogenases, acetate kin-
ase, phosphate acetyltransferase, two copies of butyrate
kinase, two copies of phosphate butyryltransferase as
well as three copies of formate acetyltransferase are also
present (Additional file 2: Table S2). In contrast to other
solventogenic clostridia, such as C. beijerinckii, C. sacchar-
obutylicum, C. saccharoperbutylacetonicum, or C. aceto-
butylicum, C. sporogenes is not able to produce acetone. In
solventogenic clostridia, CoA transferase and acetoacetate
decarboxylase, key enzymes of acetone production, are
organized in the sol operon [81-86]. In C. beijerinckii,
C. saccharobutylicum, and C. saccharoperbutylacetonicum
aldehyde dehydrogenase is also part of this operon,
whereas in C. acetobutylicum this enzyme is replaced by
alcohol/aldehyde dehydrogenase. We could not identify
CoA transferase and acetoacetate decarboxylase in the
genome of C. sporogenes DSM 795 and both, alcohol/alde-
hyde dehydrogenase and aldehyde dehydrogenase are
present, but located in different regions of the genome.
Figure 6 Genome comparison of C. sporogenes with different C. sporogene
lagging strand (circle 1 and 2) of C. sporogenes DSM 795 are marked in CO
(circle 3 to 10) is indicated for the genomes of C. sporogenes PA3679 (AGA
ATCC 3502 (CP000727.1), C. botulinum B1 str. Okra (CP000939.1, CP000940.1
E3 str. Alaska E43 (CP001078.1), C. botulinum D str. 1873 (ACSJ01000001), C.
yellow and singletons in grey (grey: >e−10-1; light yellow: <e−50- > e−10; gol
red: <e−120-0). The two innermost plots represent the GC-content and the
Mauve alignment tool and concatenating the 16 contigs of the draft geno
sequenced C. sporogenes species (B) and between C. sporogenes DSM 795,
related C. botulinum E3 str. Alaska E43 (C). Ortholog detection was done w
and an E-value of 1e-10. The total number of genes and paralogs, respectiv
Genome comparison
C. sporogenes is renowned as a nontoxic surrogate for
the proteolytic C. botulinum, an organism which pro-
duces the botulinum neurotoxin (BoNT). C. botulinum
is classified into seven serotypes (A to G) according to
the neurotoxin antigenic specificity [57,87]. Serotypes A,
B, E, and F cause human botulism, C and D are mainly
described in animal toxicity, and no botulism case has
been reported for serotype G [88,89]. For genome com-
parisons, two C. sporogenes species (ATCC 15579 and
PA3679) and available representatives of all serotypes of
C. botulinum, except for serotype G, were chosen and
retrieved from NCBI (Figure 6A). For this purpose and
to prepare data for comparisons we used the scripts
ncbi_ftp_download v0.2, cat_seq v0.1 and cds_extractor
v0.6 [90]. Proteinortho v5.04 [91] was utilized to identify
orthologs between the different organisms with an identity
cutoff of 50% and an E-value of 1e-10. The core genome
of all three C. sporogenes species consists of 2,920 CDS
with a total pan genome of 4,754 CDS. C. sporogenes DSM
s and C. botulinum strains: A: Genes encoded by the leading and the
G colors in the artificial chromosome map. The presence of orthologs
H00000000), C. sporogenes ATCC 15579 (ABKW00000000) , C. botulinum
), C. botulinum F str. Langeland (CP000728.1, CP000729.1), C. botulinum
botulinum C str. Eklund (ABDQ01000001) are illustrated in red to light
d: <e−50- > e−90; light orange: <e−90- > e−100; orange: <e−100- > e−120;
GC-skew. The artificial chromosome was built after scaffolding with
me. Venn diagrams showing orthologs genes between the three
the phylogenetic closely related C. botulinum ATCC 3502 and distantly
ith the Proteinortho software (blastp) with an identity cutoff of 50%
ely, were depicted under the corresponding species name.
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795 has 3,258 orthologous genes with C. sporogenes PA379
and 2,981 with C. sporogenes ATCC 15579 (Figure 6B). C.
sporogenes DSM 795 has the least number of genome
specific proteins of the three C. sporogenes strains with 270
singletons, as C. sporogenes ATCC 15579 contains 577 sin-
gletons and C. sporogenes PA3679 557. We identified 163,
178, and 189 paralogs in C. sporogenes DSM 795, ATCC
15579, and PA3679, respectively; but these genes were not
included into analysis.
Phylogenetic analysis based on 16S rDNA revealed

that C. sporogenes is closely related to serotypes A, B,
and F C. botulinum strains, whereas it is distantly related
to serotypes C, D, E, and G. These results were con-
firmed by gene content analyses as we identified 2,739
orthologous proteins between C. sporogenes DSM 795
and C. botulinum ATCC 3502 (serotype A) (Figure 6C).
In contrast, there are only 1,094 orthologous genes be-
tween C. sporogenes and C. botulinum E3 str. Alaska
E43 (serotype E). This number is nearly identical to
the quantity of orthologs (1,093) found between C. botu-
linum ATCC 3502 and C. botulinum E3 str. Alaska E43.
We identified 163, 148, and 125 paralogs in C. sporo-
genes DSM 795, C. botulinum ATCC 3502, and C. botu-
linum E3 str. Alaska E43, respectively; but these genes
were not included into analysis.
A genome comparison between C. sporogenes DSM 795

and C. botulinum ATCC 3502 revealed that both organisms
have 2,739 orthologs in common, with 818 singletons in
C. sporogenes DSM 795 and 672 singletons in C. botulinum
ATCC 3502. The most important difference between both
Figure 7 Tblastx comparison of the botulinum neurotoxin cluster (BoNT/A
strains. For the tblastx comparison an E-value cutoff of 1e-10 was set. Visua
in red tones, haemagglutinin components of the neurotoxin complex in bl
C. botulinum strains in light grey, the CRISPR/cas system of C. sporogenes A
in grey. Core genes are anthracite-colored.
strains is the presence of the botulinum neurotoxin
(BoNT/A) gene cluster in C. botulinum ATCC 3502 and its
absence in C. sporogenes DSM 795 (Figure 7).
The region of the neurotoxin gene cluster is flanked

by genes coding for several hypothetical proteins, com-
ponents of different ABC transporters, as well as a
ferrous iron transport system and several regulatory pro-
teins (data not shown). As shown in Figure 7, these
flanking genes are present in the C. botulinum strains as
well as in all C. sporogenes strains. This region might be
an area of high genome plasticity, as in C. sporogenes
ATCC 15579 a subtype I-B/TNEAP CRISPR/cas system
[92] is inserted, which could not be identified in the
other strains used for this comparative approach.

Conclusions
Members of the non-toxic species C. sporogenes are
closely related to neurotoxin producer C. botulinum.
This study presents an overview of physiological, mor-
phological, and genomic characteristics of the type strain
C. sporogenes DSM 795. Detailed insight into its proteo-
lytic metabolism was gained on genomic level. Also,
the ability of C. sporogenes to produce solvents such as
ethanol and butanol was linked to a set of genes and
compared to other solventogenic clostridia. Genome
comparison of C. sporogenes DSM 795 with two other
sequenced strains of this species revealed high similarity.
C. sporogenes DSM 795 was also compared at the
genomic level with two strains of the close relative
C. botulinum.
) and the flanking regions between C. botulinum and C. sporogenes
lization was done with Easyfig. The neurotoxin cluster was marked
ue tones, transposases in bright yellow, genes identified only in the
TCC 15579 in olive tones, and singletons identified for the latter strain
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Additional file 1: Table S1. Overview of all C. botulinum strains
mentioned in this study [56].

Additional file 2: Table S2. Overview of enzymes, gene tags and locus
tags of C. sporogenes DSM 795.
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