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Abstract

Ensifer medicae WSM244 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil
saprophyte or as a legume microsymbiont of Medicago species. WSM244 was isolated in 1979 from a nodule
recovered from the roots of the annual Medicago polymorpha L. growing in alkaline soil (pH 8.0) in Tel Afer, Iraq.
WSM244 is the only acid-sensitive E. medicae strain that has been sequenced to date. It is effective at fixing
nitrogen with M. polymorpha L., as well as with more alkaline-adapted Medicago spp. such as M. littoralis Loisel., M.
scutellata (L.) Mill., M. tornata (L.) Mill. and M. truncatula Gaertn. This strain is also effective with the perennial M.
sativa L. Here we describe the features of E. medicae WSM244, together with genome sequence information and its
annotation. The 6,650,282 bp high-quality permanent draft genome is arranged into 91 scaffolds of 91 contigs
containing 6,427 protein-coding genes and 68 RNA-only encoding genes, and is one of the rhizobial genomes
sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root
Nodule Bacteria (GEBA-RNB) project proposal.
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Introduction
Root nodule bacteria that fix atmospheric nitrogen in
association with annual and perennial pasture legumes
have important roles in agriculture. Some of the most
important associations in temperate and Mediterra-
nean regions are the Ensifer (Sinorhizobium1) - Medi-
cago symbioses that produce nutritious feed for
animals. Medicago is a genus within tribe Trifolieae,
which is included in the “temperate herbaceous papi-
lionoid” Inverted Repeat Lacking Clade (IRLC) le-
gumes [1, 2]. Species of Medicago are amongst the
most extensively grown forage and pasture plants and
have been cultivated ever since Medicago sativa L.
(alfalfa, or lucerne) was first domesticated in the Near
East and/or Central Asia in about 5000 BC. In
addition to perennial M. sativa L., annual medic

species used widely in agriculture include M. tornata
(L.) Mill. (disc medic), the model legume M. trunca-
tula Gaertn. (barrel medic) and M. littoralis Loisel.
(strand medic), together with more recently commer-
cialised species such as M. polymorpha L. (burr
medic) and M. murex Willd. (murex medic) [3]. Med-
icago spp. are symbiotically specific: nearly all studied
species are nodulated by strains of rhizobia belonging
to either Ensifer medicae or the closely related species
E. meliloti [4, 5]. E. medicae can be distinguished
from E. meliloti by its ability to nodulate and fix ni-
trogen with M. polymorpha L. [5].
Ensifer medicae WSM244 was isolated in 1979 from a

root nodule of M. polymorpha L. growing on alkaline
soil (pH 8.0) near Tel Afer, Iraq [6]. This strain was su-
perior in N2-fixation on a range of medics (M sativa L.,
M truncatula Gaertn., M. tornata L., M. polymorpha L.,
M. littoralis Loisel., M scutellata (L.) Mill.) in glasshouse
tests in Australia and field trials in Iraq in 1980, and was

* Correspondence: W.Reeve@murdoch.edu.au
1Centre for Rhizobium Studies, Murdoch University, Murdoch, Australia
Full list of author information is available at the end of the article

© 2015 Ardley et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ardley et al. Standards in Genomic Sciences  (2015) 10:126 
DOI 10.1186/s40793-015-0119-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s40793-015-0119-5&domain=pdf
http://orcid.org/0000-0001-9938-606X
http://dx.doi.org/10.1601/nm.1328
http://dx.doi.org/10.1601/nm.1339
http://plants.usda.gov/core/profile?symbol=MEDIC
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=163742
http://www.theplantlist.org/tpl1.1/record/ild-8536
http://dx.doi.org/10.1601/nm.1334
http://dx.doi.org/10.1601/nm.1335
http://dx.doi.org/10.1601/nm.1334
http://dx.doi.org/10.1601/nm.1335
http://dx.doi.org/10.1601/nm.1334
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DWSM244
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=619924
mailto:W.Reeve@murdoch.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


recommended for development as an inoculant in Iraq
(D. Chatel, pers com.). WSM244 has also been used in
trials aimed at developing acid-tolerant inoculant strains
for pasture medics, as the acid-sensitive nature of the
microsymbiont is a constraint to the growth and persist-
ence of Medicago spp. in agricultural regions with mod-
erately acidic soils [7]. When field tested in an acidic soil
(pH 5.0 CaCl2) in Western Australia, WSM244 survived
at the site of inoculation for two years, but unlike several
more acid tolerant strains it did not demonstrate sapro-
phytic competence and was unable to colonize the soil
[8]. This characteristic of WSM244 as an acid-soil sensi-
tive strain correlates with its acid sensitive profile for
growth in laboratory media and an inability to maintain
a neutral intracellular pH when exposed to pH 6.0 or
less [9]. This is in contrast to other E. medicae strains,
which typically are the dominant microsymbiont part-
ners of annual medics growing on acid soils, in contrast
to the more acid-sensitive E. meliloti, which preferen-
tially associates with alkaline-soil-adapted Medicago spp.
[10]. The pH response phenotype of WSM244 is in
marked contrast to the sequenced acid tolerant E. medi-
cae strain WSM419 [11]. Sequencing the genome of
WSM244 and comparing its attributes with an acid-
tolerant strain such as WSM419 would provide a means
of establishing the molecular determinants required for
adaptation to acid soils. This strain was therefore se-
lected as part of the DOE Joint Genome Institute 2010
Genomic Encyclopedia for Bacteria and Archaea-Root
Nodule Bacteria (GEBA-RNB) sequencing project [12].
Here we present a summary classification and a set of
general features for E. medicae strain WSM244, together
with a description of its genome sequence and
annotation.

Organism information
Classification and features
E. medicae WSM244 is a motile, Gram-negative rod
(Fig. 1 Left and Center) in the order Rhizobiales of the
class Alphaproteobacteria. It is fast growing, forming
colonies within 3–4 days when grown on half strength

Lupin Agar [13], tryptone-yeast extract agar [14] or a
modified yeast-mannitol agar [15] at 28 °C. Colonies on
½LA are white-opaque, slightly domed and moderately
mucoid with smooth margins (Fig. 1 Right).
Figure 2 shows the phylogenetic relationship of E.

medicae WSM244 in a 16S rRNA sequence based
tree. This strain is the most phylogenetically related
to Ensifer medicae WSM419 and Ensifer meliloti
LMG 6133T based on the 16S rRNA gene alignment,
with sequence identities of 100 % and 99.71 %, re-
spectively, as determined using the EzTaxon-e data-
base, which contains the sequences of validly
published type strains [16]. Minimum Information
about the Genome Sequence for WSM244 is provided
in Table 1 and Additional file 1: Table S1.

Symbiotaxonomy
WSM244 nodulates and is effective for nitrogen fixation
with M. littoralis Loisel., M sativa L., M. tornata (L.)
Mill. [3], M. murex Willd., M. polymorpha L., M trunca-
tula Gaertn. [8] and M scutellata (L.) Mill. (D. Chatel
per com). WSM244 nodulates and is partially effective
for nitrogen fixation with M. rotata Boiss. and M. rugosa
Desr., but does not nodulate M. blancheana Boiss. (D.
Chatel per com). The symbiotic characteristics of E.
medicae WSM244 on a range of selected hosts are sum-
marised in Additional file 2: Table S2.

Genome sequencing information
Genome project history
This organism was selected for sequencing on the
basis of its environmental and agricultural relevance
to issues in global carbon cycling, alternative energy
production, and biogeochemical importance, and is
part of the Genomic Encyclopedia of Bacteria and Ar-
chaea, The Root Nodulating Bacteria chapter project
at the U.S. Department of Energy, Joint Genome In-
stitute. The genome project is deposited in the Ge-
nomes OnLine Database [17] and a high-quality
permanent draft genome sequence is deposited in
IMG [18]. Sequencing, finishing and annotation were

Fig. 1 Images of Ensifer medicae WSM244 using scanning (Left) and transmission (Center) electron microscopy and the appearance of colony
morphology on solid media (Right)
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performed by the JGI [19]. A summary of the project
information is shown in Table 2.

Growth conditions and genomic DNA preparation
E. medicae WSM244 was grown on TY solid medium
[14] for three days, then a single colony was selected
and used to inoculate 5 ml TY broth medium. The cul-
ture was grown for 48 h on a gyratory shaker (200 rpm)
at 28 °C. Subsequently 1 ml was used to inoculate 60 ml
TY broth medium and grown on a gyratory shaker
(200 rpm) at 28 °C until OD 0.6 was reached. DNA was
isolated from 60 ml of cells using a CTAB bacterial gen-
omic DNA isolation method (http://jgi.doe.gov/collabor-
ate-with-jgi/pmo-overview/protocols-sample-preparation-

information/). Final concentration of the DNA was
0.5 mg ml−1.

Genome sequencing and assembly
The draft genome of E. medicae WSM244 was gener-
ated at the DOE Joint genome Institute (JGI) using
the Illumina technology [20]. An Illumina Std shot-
gun library was constructed and sequenced using the
Illumina HiSeq 2000 platform which generated
22,576,268 reads totaling 3,386.4 Mbp. All general as-
pects of library construction and sequencing per-
formed at the JGI can be found at the JGI website.
All raw Illumina sequence data was passed through
DUK, a filtering program developed at JGI, which

Fig. 2 Phylogenetic tree showing the relationship of Ensifer medicae WSM244 (shown in bold blue print) to other type and non-type strains in the
Ensifer genus and to other root nodule bacteria species in the order Rhizobiales, based on aligned sequences of the 16S rRNA gene (1,283 bp internal
region). (The species name “Sinorhizobium chiapanecum” has not been validly published.) Azorhizobium caulinodans ORS 571T was used as an outgroup.
All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 6 [37]. The tree was built
using the Maximum-Likelihood method with the General Time Reversible model [38]. Bootstrap analysis [39] with 500 replicates was performed to
assess the support of the clusters. Type strains are indicated with a superscript T. Strains with a genome sequencing project registered in GOLD [17]
are in bold font and the GOLD ID is provided after the GenBank accession number. Finished genomes are indicated with an asterisk
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removes known Illumina sequencing and library prep-
aration artifacts ((Mingkun L, Copeland A, Han J. un-
published) . The following steps were then performed
for assembly: (1) filtered Illumina reads were assem-
bled using Velvet (version 1.1.04) [21], (2) 1–3 Kbp
simulated paired end reads were created from Velvet
contigs using wgsim (https://github.com/lh3/wgsim),
(3) Illumina reads were assembled with simulated
read pairs using Allpaths–LG (version r41043) [22].
Parameters for assembly steps were: 1) Velvet (vel-
veth: 63 –shortPaired and velvetg: −very clean yes –
export- Filtered yes –min contig lgth 500 –scaffolding
no –cov cutoff 10) 2) wgsim (−e 0 –1 100 –2 100 –r
0 –R 0 –X 0) 3) Allpaths–LG (PrepareAllpathsInputs:
PHRED 64 = 1 PLOIDY = 1 FRAG COVERAGE = 125
JUMP COVERAGE = 25 LONG JUMP COV = 50,

RunAllpathsLG: THREADS = 8 RUN = std shredpairs
TARGETS = standard VAPI WARN ONLY = True
OVERWRITE = True) . The final draft assembly con-
tained 91 contigs in 91 scaffolds. The total size of the
genome is 6.7 Mbp and the final assembly is based
on 789.1 Mbp of Illumina data, which provides an
average 118.7x coverage of the genome.

Genome annotation
Genes were identified using Prodigal [23], as part of
the DOE-JGI genome annotation pipeline [24, 25].
The predicted CDSs were translated and used to
search the National Center for Biotechnology Infor-
mation nonredundant database, UniProt, TIGRFam,
Pfam, KEGG, COG, and InterPro databases. The
tRNAScanSE tool [26] was used to find tRNA genes,

Table 1 Classification and general features of Ensifer medicae WSM244 in accordance with the MIGS recommendations [40]
published by the Genome Standards Consortium [41]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [42]

Phylum Proteobacteria TAS [43, 44]

Class Alphaproteobacteria TAS [45, 46]

Order Rhizobiales TAS [47]

Family Rhizobiaceae TAS [48]

Genus Ensifer TAS [49–51]

Species Ensifer medicae TAS [5]

Strain: WSM244 TAS [6]

Gram stain Negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation Non-sporulating NAS

Temperature range 10–40 °C IDA

Optimum temperature 25–30 °C IDA

pH range; Optimum 6–10; 6.5–8 TAS [9]

Carbon source Arabinose, galactose, mannitol, tryptone TAS [9]

MIGS-6 Habitat Soil; root nodule on host (Medicago polymorpha L.) TAS [8]

MIGS-6.3 Salinity 0.89–2.0 % (w/v) NAS

MIGS-22 Oxygen requirement Aerobic TAS [8]

MIGS-15 Biotic relationship Free living, symbiotic TAS [8]

MIGS-14 Pathogenicity Biosafety level 1 TAS [52]

MIGS-4 Geographic location Tel Afer, Iraq TAS [6]

MIGS-5 Sample collection 1979 TAS [6]

MIGS-4.1 Latitude 36.3833 TAS [6]

MIGS-4.2 Longitude 42.4500 TAS [6]

MIGS-4.3 Depth 0–10 cm NAS

MIGS-4.4 Altitude 400 m TAS [6]
aEvidence codes—IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [53] (http://geneontology.org/page/guide-go-evidence-codes)
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whereas ribosomal RNA genes were found by
searches against models of the ribosomal RNA genes
built from SILVA [27]. Other non–coding RNAs such
as the RNA components of the protein secretion
complex and the RNase P were identified by search-
ing the genome for the corresponding Rfam profiles
using INFERNAL [28]. Additional gene prediction
analysis and manual functional annotation was per-
formed within the Integrated Microbial Genomes
(IMG) platform [29] developed by the Joint Genome
Institute, Walnut Creek, CA, USA [30].

Genome properties
The genome is 6,650,282 nucleotides with 61.21 %
GC content (Table 3) and comprised of 91 scaffolds
of 91 contigs. From a total of 6,495 genes, 6,427 were
protein encoding and 68 RNA only encoding genes.
The majority of protein-coding genes (79.34 %) were
assigned a putative function whilst the remaining
genes were annotated as hypothetical. The distribu-
tion of genes into COGs functional categories is pre-
sented in Table 4.

Insights from the genome sequence
WSM244 is one of six strains of E. medicae and one of
30 E. medicae or E. meliloti Medicago-nodulating strains
that have been sequenced and whose genomes have been
deposited in the IMG database. The genome of
WSM244 falls within the expected size range of 6.4–7.2
Mbp for E. medicae. As observed in other E. medicae ge-
nomes, WSM244 possesses a large number of genes
assigned to COG functional categories for: transport and
metabolism of amino acids (12.15 %), carbohydrates
(11.17 %), inorganic ions (5.3 %), lipids (3.91 %) and co-
enzymes (3.32 %), transcription (8.63 %) and signal

transduction (3.66 %). The WSM244 genome contains
only four pseudo genes, the numbers of which are highly
variable in sequenced E. medicae strains and can be as
high as 485 (E. medicae WSM4191). All six E. medicae
strains share high ANI values of 99.18–99.67 %, which is
consistent with the low levels of genetic diversity found
in E. medicae populations [31]. The six E. medicae
strains share 5,425 core orthologous genes. WSM244
contains 202 unique genes, including those found in
clusters encoding a putative polyketide synthase, phage
proteins and a sulfonate transport system. Around 72 %
of these unique genes encode hypothetical proteins.
Strain WSM244 is particularly interesting, as it lacks the
acid tolerance of other E. medicae strains. The genome

Table 2 Genome sequencing project information for E. medicae WSM244

MIGS ID Property Term

MIGS-31 Finishing quality High-quality draft

MIGS-28 Libraries used Illumina Standard shotgun library

MIGS-29 Sequencing platforms Illumina HiSeq 2000

MIGS-31.2 Fold coverage 677x Illumina

MIGS-30 Assemblers Velvet version 1.1.04; ALLPATHS v. r41043

MIGS-32 Gene calling methods Prodigal 1.4

Locus Tag A3C7 (http://www.ncbi.nlm.nih.gov/bioproject/?term=A3C7)

Genbank ID ATTR00000000

Genbank Date of Release July 9 2013

GOLD ID Gp0010265 (https://gold.jgi-psf.org/project?id=10265)

BIOPROJECT 882

MIGS-13 Source Material Identifier WSM244

Project relevance Symbiotic N2 fixation, agriculture

Table 3 Genome statistics for Ensifer medicae WSM244

Attribute Value % of Total

Genome size (bp) 6,650,282 100.00

DNA coding (bp) 5,800,639 87.22

DNA G + C (bp) 4,070,659 61.21

DNA scaffolds 91 100.00

Total genes 6,495 100.00

Protein coding genes 6,427 98.95

RNA genes 68 1.05

Pseudo genes 4 0.06

Genes in internal clusters 2,889 44.48

Genes with function prediction 5,153 79.34

Genes assigned to COGs 4,567 70.32

Genes with Pfam domains 5,311 81.77

Genes with signal peptides 536 8.25

Genes with transmembrane helices 1,467 22.59

CRISPR repeats 0 -
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of this strain does contain orthologs of acid response or
acid tolerance genes that were initially discovered in E.
medicae WSM419. These genes include actA (lnt), actP,
actR, actS, phrR, lpiA and acvB [32–35]. WSM244 also
contains the tcsA-tcrA-fsrR- regulatory gene cluster
which is required for the low-pH-activation of lpiA and
acvB in E. medicae WSM419 [36]. This finding is in dir-
ect contrast to the absence of fsrR, tcsA and tcrA in the
the acid-sensitive strain E. meliloti 1021. This suggests
that either there may be differences in pH responsive
gene expression in the WSM244 background, or that
acid tolerant E. medicae strains possess other candidate
genes that are required for low pH adaptation and have
not yet been identified.

Conclusions
WSM244 is of particular interest as it was isolated from
M. polymorpha growing in alkaline soil and it lacks the
acid tolerance of E. medicae strains isolated from medics
growing in acid Sardinian and Greek soils [9]. WSM244
is the only acid-sensitive E. medicae strain that has been
sequenced to date. Analysis of its sequenced genome
and comparison with other sequenced E. medicae and E.
meliloti genomes will yield new insights into the mo-
lecular basis of acid tolerance in rhizobia and into the
ecology and biogeography of the Ensifer-Medicago
symbiosis.

Endnotes
1Editorial note—Readers are advised that in Opinion

84 the Judicial Commission of the International Com-
mittee on Systematics of Prokaryotes ruled that the
genus name Ensifer Casida 1982 has priority over Sinor-
hizobium Chen et al. 1988 and the names are synonyms
[1]. It was further concluded that the transfer of mem-
bers of the genus Sinorhizobium to the genus Ensifer, as
proposed by Young [2] would not cause confusion.
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Table 4 Number of genes of Ensifer medicae WSM244
associated with general COG functional categories

Code Value % age of total
(4,567)

Description

J 220 4.23 Translation, ribosomal structure and
biogenesis

A 0 0.00 RNA processing and modification

K 449 8.62 Transcription

L 120 2.30 Replication, recombination and repair

B 1 0.02 Chromatin structure and dynamics

D 29 0.57 Cell cycle control, cell division,
chromosome partitioning

Y 0 0.00 Nuclear structure

V 100 1.92 Defense mechanisms

T 209 4.01 Signal transduction mechanisms

M 265 5.09 Cell wall/membrane/envelope biogenesis

N 71 1.36 Cell motility

Z 0 0.00 Cytoskeleton

W 24 0.46 Extracellular structures

U 68 1.31 Intracellular trafficking, secretion, and
vesicular transport

O 187 3.59 Posttranslational modification, protein
turnover, chaperones

C 338 6.49 Energy production and conversion

G 574 11.02 Carbohydrate transport and metabolism

E 602 11.56 Amino acid transport and metabolism

F 125 2.40 Nucleotide transport and metabolism

H 225 4.32 Coenzyme transport and metabolism

I 220 4.23 Lipid transport and metabolism

P 286 5.49 Inorganic ion transport and metabolism

Q 160 3.07 Secondary metabolite biosynthesis,
transport and catabolism

R 552 10.60 General function prediction only

S 323 6.20 Function unknown

X 47 0.90 Mobilome: prophages, transposons

- 1928 29.68 Not in COGS
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