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Pseudomonas jessenii strains isolated from a
copper contaminated site in Denmark
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Abstract

Pseudomonas jessenii C2 and Pseudomonas jessenii H16 were isolated from low-Cu and high-Cu industrially contaminated
soil, respectively. P. jessenii H16 displayed significant resistance to copper when compared to P. jessenii C2. Here we
describe genome sequences and interesting features of these two strains. The genome of P. jessenii C2 comprised
6,420,113 bp, with 5814 protein-coding genes and 67 RNA genes. P. jessenii H16 comprised 6,807,788 bp, with 5995
protein-coding genes and 70 RNA genes. Of special interest was a specific adaptation to this harsh copper-contaminated
environment as P. jessenii H16 contained a novel putative copper resistance genomic island (GI) of around 50,000 bp.
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Introduction
Copper is an essential micronutrient in most organisms
and required as a co-factor in biological processes such
as redox reactions (electron transport, oxidative respir-
ation, denitrification) [1, 2]. However, at higher concen-
trations copper will become toxic and inhibit or kill
cells. Therefore, microorganisms have developed sophis-
ticated copper homeostasis and resistance mechanisms
in order to maintain the normal cellular copper supply
to essential cuproenzymes while avoiding copper poison-
ing [3, 4]. Some highly copper resistant microorganisms
have attracted great interests due to potential biotechno-
logical applications in bio-mining and bioremediation of
environments contaminated with copper [5].
Pseudomonas spp. are ubiquitous inhabitants of soil,

water and plant surfaces belonging to the Gammaproteo-
bacteria. Pseudomonas spp. has an exceptional capacity to
produce a wide variety of secondary metabolites, including
antibiotics that are toxic to plant pathogens [6, 7]. Pseudo-
monas jessenii was also found to be an important rhizobac-
terium conferring protection against a number of soilborne
plant pathogens [8]. P. jessenii C2 and P. jessenii H16 were

isolated from low-Cu soil and high-Cu soil from an aban-
doned wood impregnation site in Hygum, Denmark,
respectively [9]. The Hygum site was contaminated with
copper sulfate from 1911 to 1924, then the area was
cultivated until 1993 and has been a fallow field since then
[9, 10]. P. jessenii H16 was able to grow in medium con-
taining high concentrations of copper, whereas P. jessenii
C2 was sensitive to high copper concentrations. Here, we
present the genome sequences, a brief characterization and
annotation of P. jessenii C2 and P. jessenii H16.

Organism information
Classification and features
A highly copper contaminated high-Cu soil and a corre-
sponding low-Cu soil were collected (0–20 cm depth) from
a well-described Cu gradient field site in Hygum, Denmark.
The high-Cu site was contaminated almost exclusively with
CuSO4 more than 90 years ago [9]. The adjacent low-Cu
control site was located just outside the contaminated area
and had been subjected to the same land use for more than
80 years. The low-Cu and high-Cu soil had similar physi-
cochemical characteristics except for their total Cu con-
tents of 21 and 3172 mg kg-1, respectively [9, 11]. Bacteria
were isolated from replicated soil subsamples (n = 3) and
diluted, spread-plated on Pseudomonas-selective Gould’s
S1 agar [11]. For each dilution series, 30 colonies emerging
after two days at 25 °C were selected and isolated in pure

* Correspondence: rensing@iue.ac.cn
3College of Resources and the Environment, Fujian Agriculture and Forestry
University, Fuzhou, China
4J. Craig Venter Institute, La Jolla, CA, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Qin et al. Standards in Genomic Sciences  (2016) 11:86 
DOI 10.1186/s40793-016-0200-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s40793-016-0200-8&domain=pdf
http://orcid.org/0000-0002-5012-7953
http://doi.org/10.1601/nm.2552
http://doi.org/10.1601/nm.2068
http://doi.org/10.1601/nm.2068
http://doi.org/10.1601/nm.2552
http://doi.org/10.1601/nm.2625
http://doi.org/10.1601/nm.2625
http://dx.doi.org/10.1601/nm.2625
http://dx.doi.org/10.1601/nm.2625
https://www.google.com/maps/place/Denmark
http://doi.org/10.1601/nm.2625
http://doi.org/10.1601/nm.2625
http://doi.org/10.1601/nm.2625
http://doi.org/10.1601/nm.2625
https://www.google.com/maps/place/Denmark
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=629395
http://doi.org/10.1601/nm.2552
mailto:rensing@iue.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


culture by repeated plating [11]. Two of the resulting iso-
lates were selected for further study. P. jessenii H16 was
able to grow at high concentration of Cu (2 mM) on one-
tenth strength LB agar, whereas P. jessenii C2 only grew
with up to 0.125 mM Cu.
Strain C2 and H16 were both Gram-reaction negative.

Cells of strain C2 and H16 were rod shaped with rounded
ends and motile. The cells of C2 were 2.12–2.45 μm
(mean, 2.28 μm) in length compared to 0.49–0.62 μm
(mean, 0.55 μm) in width (Fig. 1a). The cells of H16 were
1.95–2.38 μm× 0.42–0.57 μm in size (Fig. 1b). No Sporu-
lation was observed for both strains. The colonies were
white and translucent on Gould’s S1 agar medium.
Growth occurred aerobically at 4–37 °C, and optimal
growth was observed at 30 °C, pH 7.0 for strain C2. Strain
H16 preferred pH 6.7, at 30 °C for optimal growth. Both
strains grew in 0–4 % (w/v) NaCl (Tables 1 and 2).

Chemotaxonomy
Fatty acid analyses were performed by the Identification
Service of the DSMZ, Braunschweig, Germany [12]. The
fatty acid profiles were similar when comparing strains C2
and H16. The major fatty acids of the two strains showed
as follows: C16: 1ω7c and/or iso-C15: 0 2-OH (36.4 % in P.
jessenii C2 and 40.1 % in P. jessenii H16); C18 : 1 ω7c
(15.3 % in P. jessenii C2 and 10.8 % in P. jessenii H16) and
C16 : 0 (28.8 % in P. jessenii C2 and 34.6 % P. jessenii H16).
Biochemical properties were tested using API 20NE

(BioMérieux) for Strains C2 and H16. In the API 20NE
system, positive reactions for both strains were observed
for nitrate reduction and production of arginine dihydro-
lase; negative reactions were observed for indole produc-
tion, urease activity, Lysine and ornithine decarboxylase
and gelatin hydrolysis (Additional file 1: Table S1). Strain
C2 assimilated d-glucose, d-melibiose, d-sucrose, d-
mannitol, l-rhamnose, inositol, trehalose, d-lyxose and l-
arabinose, but not sorbitol. Strain H16 could utilize d-
glucose, d-melibiose, d-sucrose, d-mannitol, trehalose, d-

lyxose, l-arabinose and inostitol as carbon sources, but
not, l-rhamnose and sorbitol (Additional file 1: Table S1).

16S rRNA gene analysis
Comparative 16S rRNA gene sequence analysis using the
EzTaxon database [13] indicated that strain C2 and H16
were both most closely related to P. jessenii CIP 105275T

(GenBank accession no. AF068259) with sequence similar-
ities of 99.87 and 99.14 %, respectively. Phylogenetic ana-
lysis was performed using the 16S rRNA gene sequences
of strains C2, H16 and related species. Sequences were
aligned and phylogenic trees were constructed using Max-
imum Likelihood method implemented in MEGA version
6 [14]. The resultant tree topologies were evaluated by
bootstrap analyses with 1000 random samplings (Fig. 2).

Genome sequencing information
Genome project history
Next-generation shotgun-sequencing was performed at the
Beijing Genomics Institute (BGI, Shenzhen). The whole
genome shotgun project of P. jessenii C2 and P. jessenii
H16 has been deposited at DDBJ/EMBL/GenBank under
the accession numbers JSAK00000000 and JSAL00000000.
The version described in this paper is the first version. A
summary of the project and the Minimum Information
about a Genome Sequence [15] are shown in Table 3.

Growth conditions and genomic DNA preparation
P. jessenii C2 and P. jessenii H16 were aerobically culti-
vated on Pseudomonas-selective Gould’s S1 agar at 28 °C
[16]. Total genomic DNA was extracted using Puregene
Yeast/Bact Kit according to the manufacturer’s instruc-
tions (QIAGEN). The quantity of the genomic DNA was
determined by Qubit® fluorometer (Invitrogen, CA,
USA) with Qubit dsDNA BR Assay kit (Invitrogen, CA,
USA) and amounted to 55 ng/μL of DNA for P. jessenii
C2 and 48.2 ng/μL of DNA for P. jessenii H16.

Fig. 1 Micrograph of Pseudomonas jessenii C2 and H16 obtained by scanning electron microscopy. a Pseudomonas jessenii C2. b Pseudomonas jessenii H16
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Genome sequencing and assembly
The genome sequence of P. jessenii H16 and P. jessenii
C2 was determined by BGI using the Illumina
Hiseq2000 with a 500 bp library constructed [17], gener-
ating 1.09 gigabytes of DNA sequence with an average
coverage of ~160 fold and ~170 fold; yielding 1,205,9244
and 1,203,8756 paired-end reads with a 90-bp read

length, respectively. The resulting sequence data was
quality assessed, trimmed, and assembled de novo as
described previously [18] using CLCBio Genomic Work-
bench 7.0 (CLCBio, Denmark). P. jessenii H16 generated
78 contigs with an n50 value of 279,014 bp. P. jessenii
C2 generated 64 contigs with an n50 value of
224,893 bp.

Table 1 Classification and general features of P.jessenii C2
according to the MIGS recommendations [15]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [40]

Phylum Proteobacteria TAS [41]

Class Gammaproteobacteria TAS [42,
43]

Order Pseudomonadales TAS [44]

Family Pseudomonadaceae TAS [45]

Genus Pseudomonas TAS [46,
47]

Species P. jessenii TAS [48]

strain: C2 IDA

Gram stain Negative IDA

Cell shape Rod-shaped IDA

Motility Motile IDA

Sporulation Non-sporulating IDA

Temperature
range

4–37 °C IDA

Optimum
temperature

30 °C IDA

Optimum pH 7.0 IDA

Carbon source d-glucose, d-melibiose, d-sucrose,
d-mannitol, L-rhamnose, inositol,
trehalose, d-lyxose,L-arabinose

IDA

MIGS-6 Habitat soil IDA

MIGS-6.3 Salinity 0–4 % IDA

MIGS-22 Oxygen
requirement

Aerobic IDA

MIGS-15 Biotic
relationship

Free-living IDA

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic
location

Hygum, Denmark IDA

MIGS-5 Sample
collection

May 2013 IDA

MIGS-4.1 Latitude 55° 46’ 25’’N IDA

MIGS-4.2 Longitude 9° 25’ 52’’ E IDA
aEvidence codes - IDA inferred from direct assay, TAS traceable author statement
(i.e., a direct report exists in the literature), NAS non-traceable author statement
(i.e., not directly observed for the living, isolated sample, but based on a generally
accepted property for the species, or anecdotal evidence). These evidence codes
are from the Gene Ontology project [49]. If the evidence is IDA, the property was
directly observed by the authors

Table 2 Classification and general features of P.jessenii H16
according to the MIGS recommendations [15]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [40]

Phylum Proteobacteria TAS [41]

Class Gammaproteobacteria TAS [42,
43]

Order Pseudomonadales TAS [44]

Family Pseudomonadaceae TAS [45]

Genus Pseudomonas TAS [46,
47]

Species P. jessenii TAS [48]

strain: H16 IDA

Gram stain Negative IDA

Cell shape Rod-shaped IDA

Motility Motile IDA

Sporulation Non-sporulating IDA

Temperature
range

4–37 °C IDA

Optimum
temperature

30 °C IDA

Optimum pH 6.7 IDA

Carbon source d-glucose, d-melibiose, d-sucrose,
d-mannitol, trehalose, d-lyxose,
L-arabinose,inostitol

IDA

MIGS-6 Habitat Copper contaminated soil IDA

MIGS-6.3 Salinity 0–4 % IDA

MIGS-22 Oxygen
requirement

Aerobic IDA

MIGS-15 Biotic
relationship

Free-living IDA

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic
location

Hygum, Denmark IDA

MIGS-5 Sample
collection

May 2013 IDA

MIGS-4.1 Latitude 55° 46’ 25’’N IDA

MIGS-4.2 Longitude 9° 25’ 52’’ E IDA
aEvidence codes - IDA inferred from direct assay, TAS traceable author statement
(i.e., a direct report exists in the literature), NAS non-traceable author statement
(i.e., not directly observed for the living, isolated sample, but based on a generally
accepted property for the species, or anecdotal evidence). These evidence codes
are from the Gene Ontology project [49]. If the evidence is IDA, the property was
directly observed by the authors
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Genome annotation
The genes in the assembled genome were predicted
based on the RAST database [19]. The predicted ORFs
were annotated by searching clusters of orthologous
groups [20] using the SEED database [21]. RNAmmer
1.2 [22] and tRNAscanSE 1.23 [23] were used to identify
rRNA and tRNA genes, respectively.

Genome properties
P. jessenii C2 contained 6,420,113 bp with a G+C content
of 59.83 %, 5881 predicted genes, 5814 were protein-
coding genes, 63 tRNA genes and 4 rRNA genes. In total,
5179 genes were assigned to biological functions and 635
were annotated as hypothetical proteins. P. jessenii H16
contained 6,807,788 bp, with a GC content of 59.02 %,

Fig. 2 Phylogenetic tree of P. jessenii C2 and P. jessenii H16 relative to type strains within the genus Pseudomonas. The strains and their corresponding
GenBank accession numbers of 16S rRNA genes are displayed in parentheses. The sequences were aligned using Clustal W, and the maximum
likelihood tree was constructed based on Jukes-Cantor model by using MEGA6 [14]. Bootstrap values above 50 % are shown obtained from 1000
bootstrap replications. Bar 0.005 substitutions per nucleotide position

Table 3 Project information

MIGS ID Property Term

MIGS 31 Finishing quality High-quality draft High-quality draft

MIGS-28 Libraries used One paired-end Illumina library One paired-end Illumina library

MIGS 29 Sequencing platforms llIumina HiSeq 2000 llIumina HiSeq 2000

MIGS 31.2 Fold coverage 170× 160×

MIGS 30 Assemblers CLC Genomics
Workbench, version7.0.4

CLC Genomics
Workbench, version7.0.4

MIGS 32 Gene calling method Glimmer 3.0 Glimmer 3.0

Locus Tag NL64 RY26

Genbank ID JSAK00000000.1 JSAL00000000.1

GenBank Date of Release 2014/12/17 2014/12/17

GOLD ID Gp0157184 Gp0157185

BIOPROJECT PRJNA264019 PRJNA264019

MIGS 13 Source Material Identifier HC-Cu02 HC_Cu16

Project relevance Low-Cu soil Copper contaminated soil
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Table 4 Genome statistics

Attribute P. jessenii C2 P. jessenii H16

Value % of total Value % of total

Genome size (bp) 6,420,113 100.00 6,807,788 100.00

DNA coding (bp) 5,484,120 85.42 5,835,906 85.72

DNA G+C (bp) 3,851,154 59.83 4,017,956 59.02

DNA scaffolds 64 - 78 -

Total genes 5881 100.00 6065 100.00

Protein coding genes 5814 98.86 5995 98.85

RNA genes 67 1.14 70 1.15

Pseudo genes

Genes with function prediction 5179 88.06 5344 88.11

Genes assigned to COGs 4314 73.75 4354 71.79

Genes with Pfam domains 3595 61.13 3587 59.14

Genes with signal peptides 510 8.67 537 8.85

Genes with transmembrane helices 1260 21.42 1343 22.14

CRISPR repeats 38 - 11 -

Table 5 Number of genes associated with general COG functional categories

P. jessenii C2 P. jessenii H16

Code Value %a Value %a Description

J 183 3.14 186 3.10 Translation, ribosomal structure and biogenesis

A 1 0.02 2 0.03 RNA processing and modification

K 425 7.31 425 7.09 Transcription

L 147 2.53 135 2.25 Replication, recombination and repair

B 2 0.34 3 0.05 Chromatin structure and dynamics

D 35 0.60 35 0.58 Cell cycle control, Cell division, chromosome partitioning

V 59 1.01 57 0.95 Defense mechanisms

T 368 6.33 389 6.49 Signal transduction mechanisms

M 239 4.11 282 4.70 Cell wall/membrane biogenesis

N 128 2.20 135 2.25 Cell motility

U 119 2.05 128 2.14 Intracellular trafficking and secretion

O 175 3.01 168 2.80 Posttranslational modification, protein turnover, chaperones

C 312 5.37 278 4.64 Energy production and conversion

G 219 3.77 247 4.12 Carbohydrate transport and metabolism

E 515 8.86 497 8.29 Amino acid transport and metabolism

F 85 1.46 99 1.65 Nucleotide transport and metabolism

H 177 3.04 193 3.22 Coenzyme transport and metabolism

I 237 4.08 194 3.24 Lipid transport and metabolism

P 300 5.16 286 4.77 Inorganic ion transport and metabolism

Q 142 2.44 129 2.15 Secondary metabolites biosynthesis, transport and catabolism

R 532 9.15 572 9.54 General function prediction only

S 444 7.64 451 7.52 Function unknown

- 970 16.68 1104 18.42 Not in COGs
aThe total is based on the total number of protein coding genes in the genome
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6065 predicted genes, and 5995 were protein-coding
genes, 65 tRNA and 5 rRNA genes. Among the protein
coding genes 5344 were assigned to biological functions,
while 651 were annotated as hypothetical proteins. The
properties and statistics of those two genomes are summa-
rized in Table 4. The distribution of genes into COG func-
tional categories is presented in Table 5 and Fig. 3.

Insights into the genome
Genes conferring resistances to heavy metals in the two
studied strains are listed in Table 6. Copper efflux from the
cytosol is mediated by the P1B-type ATPase family, which
is highly conserved from bacteria to humans [24]. Both P.

jessenii C2 and P. jessenii H16 contained genes encoding a
copper-transporting P1B-type ATPase (CopA) with
conserved CPCALG motif [25], a copper-responsive metal-
loregulatory protein CueR, and the multicopper oxidase
CueO. In addition, one additional gene encoding a Cu
+-ATPase is present on the genome of P. jessenii H16 as
part of the GI discussed later. P. jessenii H16 also
contained ccoI encoding a Cu+-ATPase catalyzing a slower
rate of efflux for copper insertion into cytochrome c oxi-
dase [26]. The presence of a cop operon, comprising
copABCDRS had been reported in related P.fluorescens
SBW25 and P.putida KT2440 [27, 28]. Both P. jessenii
strains contained copCDRS probably encoding proteins

Fig. 3 Circular map of the chromosome of P. jessenii C2 and P. jessenii H16. From outside to the center: P. jessenii H16 genes on forward strand (color
by COG categories), P. jessenii H16 CDS on forward strand, tRNA, rRNA, other; P. jessenii H16 CDS on reverse strand, P. jessenii H16 tRNA, rRNA, other,
genes on reverse strand (color by COG categories); P. jessenii C2 CDS blast with P. jessenii H16 CDS; P. fluorescens SW25 (NC_012660) CDS blast with P.
jessenii H16 CDS; P. jessenii H16 GC content; P. jessenii H16 GC skew, where green indicates positive values and magenta indicates negative values
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responsible for copper uptake, however, only P. jessenii
H16 also contained copAB as part of the GI. Both P. jesse-
nii C2 and P. jessenii H16 contain an arsenic resistance de-
terminant (arsRBCH) [29] a gene involved in chromate
resistance (chrA) [26] (Table 6). The two strains also con-
tained genes encoding a multidrug efflux system MexEF-
OprN regulated by MexT and genes encoding DNA gyrase
subunit A and B, and topoisomerase subunit (IV) A and B
[30, 31].
P. jessenii H16 contained an additional putative metal

fitness/pathogenicity island when compared with P. jes-
senii C2. It encompasses about 50,000 bp beginning at a
gene encoding a sulfur carrier protein (KII37703) and
ending with genes encoding Tn7 transposition proteins
(KII37740-KII37743). This potential pathogenicity/fit-
ness island harbored several copper resistance determi-
nants including the cus determinant encoding
CusABCRS (KII37706-37708, KII37711-37712) involved
in periplasmic copper detoxification [32, 33]. In addition,
genes encoding the P-type ATPase CopA, the multicop-
per oxidase CueO and CopBDG (KII37893, KII37715,
KII37716, KII37709, KII37717) could be identified
(Fig. 4). We also predicted specific GI for both P. jessenii
H16 and P. jessenii C2 using the IsfindViewer [34].
Based on the automatic prediction algorithm two puta-
tive regions (coordinates KII37706-KII37717, KII37721-
KII37737) were only identified in P. jessenii H16. Similar
copper fitness islands could also be detected in P.extre-
maustralis 14-3b (AHIP00000000), isolated from a tem-
porary pond in Antarctica; Pseudomonas sp.Ag1
(AKVH00000000) isolated from midguts of mosquitoes
and P. fluorescens FH4 (AOHN00000000) [35–37]. This
island also contained genes encoding the nickel efflux
transporter NcrA (KII37721) and the transcriptional re-
pressor NcrB (KII37723) [38]. Moreover, genes merTR-
CAB (KII37733-37737) encoding a mercury-resistance
determinant are present on this island [39]. Many of the
various putative GI contain functions related to mobility
such as integrases or mobile genetic elements (MGE)
which includes transposons and IS elements. As shown
in P. jessenii H16, these putative GI have conferred this
strain with additional heavy metal resistance capability,
which may be transferred to other bacteria via Tn7
transposons and are highly relevant for adaption to this
specific copper contaminated niche.

Conclusion
The draft genome sequences of P. jessenii C2 isolated
from low-Cu soil and P. jessenii H16 isolated from high-
Cu soil were determined and described here. H16 pro-
vided an insight into the genomic basis of the observed
higher copper resistance when compared with C2. Based
on analysis and characterization of the genome, P. jessenii
H16 is predicted to be resistant to a number of heavy

Table 6 P.jessenii C2 and P.jessenii H16 genes related to heavy
metal resistance

P.jessenii C2 P.jessenii H16

Protein
id

Size/aa Protein
id

Size/aa Predicted function

KII28258 513 KII28679 459 Multicopper oxidase CueO-1

KII31612 122 KII28987 121 Copper resistance protein CopC

KII31613 282 KII28988 286 Copper resistance protein CopD-1

KII30013 133 KII32596 138 Cu(I)-responsive transcriptional
regulator CopR

KII30014 798 KII32595 798 Copper-translocating P-type
ATPase CopA-1

KII30016 66 KII32593 66 Copper resistance protein CopZ

KII37329 149 KII29565 149 Metal-binding protein CopG-1

KII33434 179 KII28041 179 Copper tolerance protein

KII33435 227 KII28042 227 Copper response regulator CusR-1

KII33436 450 KII28043 450 Copper sensor histidine kinase
CusS-1

KII34384 759 KII35062 770 Lead, cadmium, zinc and mercury
transporting ATPase

KII29503 231 KII36596 231 Arsenic resistance protein ArsH

KII29504 157 KII36597 157 Arsenate reductase ArsC

KII29505 428 KII36598 116 Arsenical resistance operon
repressor ArsR

KII29506 116 KII36460 428 Arsenical pump membrane
protein ArsB

KII31669 453 KII30277 447 Chromate transport protein ChrA

KII37024 798 Cytochrome c oxidases

KII37706 1047 Cation transporter CusA

KII37707 494 RND transporter CusB

KII37708 418 RND efflux outer membrane
protein CusC

KII37709 312 Copper resistance protein CopD-2

KII37710 462 Copper sensor histidine kinase CusS-2

KII37711 231 Copper response regulator CusR-2

KII37713 178 Blue (type1) copper domain-
containing protein

KII37893 676 Copper-translocating P-type
ATPase CopA-2

KII37715 642 Multicopper oxidase CueO-2

KII37716 333 Copper resistance protein CopB

KII37717 155 Metal-binding protein CopG-2

KII37719 321 Cation transporter CzcD

KII37721 436 Nickel efflux system NrcA

KII37723 99 Nickel resistance protein NcrB

KII37733 116 Mercuric transport protein MerT

KII37734 91 Mercury transporter MerR

KII37735 144 Mercury transport protein MerC

KII37736 560 Mercuric reductase MerA

KII37737 212 Alkylmercury lyase MerB
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metal(loid)s, such as Hg2+, Ni2+ Cr2+ and As3+. Compara-
tive genomic analysis of those two strains suggested acqui-
sition of a fitness island encoding numerous genes
involved in conferring resistance to Cu and other metals
as an important adaptive mechanism enabling survival of
P. jessenii H16 in its Cu contaminated habitat. Possibly, P.
jessenii H16 may have potential for bioremediation of cop-
per contamination environments.
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