
SHORT GENOME REPORT Open Access

Genome sequencing and description of
Oerskovia enterophila VJag, an agar- and
cellulose-degrading bacterium
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Abstract

A nonmotile, Gram-positive bacterium that shows an elongated and branching cell shape was isolated from soil
samples from the botanical garden of Ulm University, Ulm, Germany. Here, the isolation procedure, identification,
genome sequencing and metabolic features of the strain are described. Phylogenetic analysis allowed to identify
the isolated strain as Oerskovia enterophila. The genus Oerskovia belongs to the family Cellulomonadaceae within the
order Actinomycetales. The length of cells of O. enterophila ranges from 1 μm to 15 μm, depending on the growth
phase. In the exponential growth phase, cells show an elongated and branching shape, whereas cells break up to
round or coccoid elements in the stationary growth phase. The 4,535,074 bp long genome consists of 85 contigs
with 3918 protein-coding genes and 57 RNA genes. The isolated strain was shown to degrade numerous complex
carbon sources such as cellulose, chitin, and starch, which can be found ubiquitously in nature. Moreover, analysis
of the genomic sequence revealed the genetic potential to degrade these compounds.
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Introduction
Oerskovia enterophila was formerly characterized as
Promicromonospora enterophila by Jàger et al. in 1983
[1]. Later, P. enterophila was re-classified as O. entero-
phila by Stackebrandt et al. [2], since only spore-like
elements and no real spores are formed. Furthermore, a
phylogenetic tree based on the 16S rRNA gene se-
quences of strains of the genera Cellulomonas and
Promicromonospora shows that O. enterophila did not
cluster with the type species of Promicromonospora,
Promicromonospora citrea, or Promicromonospora
sukumoe [2, 3]. The genus Oerskovia was initially de-
scribed in 1970 by Prauser et al. [4] and harbors cur-
rently four species with O. turbata as type species [2].
Bacteria of the genus Oerskovia belong to the phylum
Actinobacteria, which is one of the largest taxonomic
units among the domain Bacteria [5]. Bacteria belonging
to Actinobacteria show a wide range of G + C-content,

from 51% to more than 70% [5–7]. Actinobacteria are
widely distributed in terrestrial as well as in aquatic
habitats [8, 9]. In general, members of the class Actino-
bacteria show a high morphological variety, which is
also true for species of the genera Oerskovia and Cellulo-
monas [10]. Furthermore, members of the family Cellu-
lomonadaceae are known for their ability to decompose
plant-derived biopolymers such as starch, cellulose or
chitin [11]. Due to the close relationship of members of
the genera Oerskovia and Cellulomonas [12, 13] it is
likely that both share genetic features enabling them to
degrade these biopolymers. To investigate the genetic
potential for biopolymer degradation, the genome of the
isolate was sequenced. Furthermore, a genome wide
comparison of the isolated strain with other Oerskovia
type strains was performed. Additionally, the isolated
strain was aerobically grown on respective carbon
sources to validate the functionality of the proposed
degradation pathways.
In this contribution, the classification, the metabolic

features, and the genome insights of the isolated strain
are provided.
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Organism information
Classification and features
The isolated strains were identified as Oerskovia entero-
phila based on 16S rRNA gene sequence identities of
more than 99% compared to the type strain of O. entero-
phila DSM 43852 [14]. All subsequent analyses were
performed using the strain designated as O. enterophila
VJag. Information regarding the enrichment and isola-
tion procedures as well as identification of Oerskovia
strains are described in the Additional files 1 and 2:
S1 and S2.
Investigations of the cell morphology of the isolated

strain O. enterophila VJag (Table 1) using scanning elec-
tron microscopy revealed that cells show different
morphologies in exponential and stationary growth
stage. In the exponential growth phase, cells show
extensive branches with an overall length up to
15 μm, whereas the cells are smaller and less

branched in the stationary growth phase (Fig. 1).
These different cell morphologies were also previously ob-
served by Stackebrandt et al. [2].
The 16S rRNA gene sequence (OJAG_11220,

LRIE01000058.1) of O. enterophila VJag was blasted
[15] and used for subsequent phylogenetic analysis.
Therefore, 16S rRNA reference sequences of 17 closely re-
lated type strains were aligned using MAFFT version
7.215 [16, 17] and was performed using EMBL-EBI web
services. The length of the 17 references ranged from
1395 to 1612 bp and had average length of 1486 bp. The
phylogenetic tree was reconstructed using the software
MrBayes version 3.2.6 [18]. The recommended settings in
the manual for tree reconstruction use a generalized time
reversible evolutionary model. The quick start instructions
were followed to run Bayesian phylogenetic analysis. The
run was stopped since the standard deviation of split fre-
quencies was below 0.0042 after 1,000,000 generations.

Table 1 Classification and general features of O. enterophila VJag according to the MIGS recommendations [26]

MIGS ID Property Term Evidence codea

Classification Domain: Bacteria TAS [39]

Phylum: ‘Actinobacteria’ TAS [5]

Class: Actinobacteria TAS [12]

Order: Actinomycetales TAS [40–42]

Family: Cellulomonadaceae TAS [11, 19]

Genus: Oerskovia TAS [4]

Species: Oerskovia enterophila TAS [1, 2]

Strain: VJag (LRIE00000000) TAS [5, 14]

Gram stain Positive IDA, TAS [4]

Cell shape Rods IDA, TAS [4]

Motility Non-motile IDA, TAS [4]

Sporulation Non-sporulating IDA, TAS [2]

Temperature range Mesophile IDA, TAS [4]

Optimum temperature 28–30 °C IDA, TAS [4]

pH range, optimum 3–11, 7 TAS [1], IDA

Carbon source glucose, fructose, mannose, galactose, ribose, xylose,
cellobiose, maltose, trehalose, saccharose, lactose

IDA, TAS [1, 2, 4]

MIGS-6 Habitat Affiliated to gut environments of invertebrates, soil TAS [11]

MIGS-6.3 Salinity 5–7% (w/v) TAS [1]

MIGS-22 Oxygen-requirement Facultative anaerobe TAS [4]

MIGS-15 Biotic relationship Free-living, commensal IDA, TAS [11]

MIGS-14 Pathogenicity -

MIGS-4 Geographic location Botanical garden of Ulm University, Ulm, Germany IDA

MIGS-5 Sample collection January 2013 IDA

MIGS-4.1 Latitude 48.42218 °N IDA

MIGS-4.2 Longitude 9.95922 °E IDA

MIGS-4.4 Altitude -
aEvidence code - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement; These evidence codes are from the Gene Ontology project [43]. If the evidence
is IDA, then the property was directly observed for a live isolate by one of the authors
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The resulting phylogenetic tree is shown in Fig. 2.
Described species of the genera Oerskovia and Cellulo-
monas belong to the same family of Cellulomonadaceae.
On the other hand, Sanguibacter belongs to the family
of Sanguibacteriaceae which is defined as a neighboring
group to Cellulomonadaceae [19]. Sanguibacter is the
only described genus within the respective family with
currently six species [20–24].

Genome sequencing information
Genome project history
The genome of O. enterophila VJag was sequenced to
get insights in the genomic features and the metabolic
potential of this strain. Furthermore, no genomes of
members of this species were available at the time of
writing. A draft sequence is available at NCBI for the
species O. turbata NRRL B-8019 (JOFV00000000) [25].
The complete genome of O. enterophila VJag has a size
of 4,535,074 bp and consists of 85 contigs. In this contri-
bution the version LRIE01000000 is described. The

genome sequencing and gene annotation was performed
by Goettingen Genomics Laboratory (Germany). The se-
quence can be found under the accession number
LRIE00000000. Table 2 shows the project information
according to MIGS specification [26].

Growth conditions and genomic DNA preparation
O. enterophila VJag was cultivated in 5 ml TSYE-
medium (medium 92, DSMZ) at 28 °C overnight in an
orbital shaker at 120 rpm for the isolation of genomic
DNA. Genomic DNA was isolated using MasterPure
Gram positive DNA Purification kit (Epicentre, Madison,
WI, USA) according to the manufacturer’s instructions.
DNA concentrations and purity were analyzed using the
UV-Vis spectrophotometer NanoDrop 2000 (Thermo
Fisher Scientific, Waltham, MA, USA). The genomic
DNA yield was 2463 ng/μl. The DNA purity was deter-
mined using the UV absorbance ratio 260/208 nm and
260/230 nm and revealed ratios of 2.01 and 2.17,
respectively.

Fig. 1 Electron micrograph of O. enterophila VJag, using a Hitachi S-5200 scanning electron microscope. a: cells from the exponential growth
phase; scale bar: 5 μm. b: cells from the stationary growth phase; scale bar: 2 μm. Zentrale Einrichtung Elektronenmikroskopie, Universität Ulm

Fig. 2 Phylogenetic tree based on the 16S rRNA sequences indicating the genetic relationships between the isolate O. enterophila VJag and other
closely related type strains. The scale bar shows 0.02 nucleotide changes per nucleotide position. The phylogenetic tree was created using MrBayes
[18] version 3.2.6, sequences were aligned using MAFFT [16, 17]. Numbers at the nodes present the posterior probability
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Genome sequencing and assembly
A combined approach was used for the whole-genome
sequencing of O. enterophila VJag using the 454 GS-FLX
TitaniumXL system (titanium GS70 chemistry, Roche
Life Science, Mannheim, Germany) and the Genome
Analyzer II (Illumina, San Diego, CA). According to the
manufacturer’s protocols, the shotgun libraries were pre-
pared, which resulted in 97,681 reads for 454 shotgun
sequencing (11.46 × coverage) and 4,756,630 112-bp paired
end Illumina reads (68.28 × coverage). Illumina reads were
trimmed using Trimmomatic 0.32 [27] to remove se-
quences with quality scores lower than 20 (Illumina 1.9
encoding) and remaining adaptor sequences, respectively.
The initial hybrid de novo assembly was performed using
the MIRA 3.4 [28] and Newbler 2.9 (Roche Life Science,
Mannheim, Germany) software. The final assembly re-
sulted in 85 contigs with an average coverage of 79.60, an
N50 value of 96,617 bp and an N90 value of 28,097 bp,
respectively.

Genome annotation
The Prodigal software tool [29] was used for automatic
gene prediction [29], rRNA and tRNA gene identifica-
tion was performed using RNAmmer [30] and tRNAscan
[31], respectively. The automatic gene-annotation was
performed by using the IMG-ER system [32, 33]. The
annotation was manually curated using the Swiss-Prot,
TrEMBL, and InterPro databases [34].

Genome properties
The genome of O. enterophila VJag is 4,535,074 bp in
length and has an average G + C content of 72.4%

(Fig. 3). The genome sequence shows 3975 genes in
total, 3918 are protein-coding genes, 57 are RNA genes,
of which 6 code for rRNA. The remaining genes code
for proteins with unknown function or hypothetical pro-
teins. All statistics and properties are listed in Table 3,
the number of protein-coding genes associated with
general COG functional categories is shown in Table 4.
A circular representation of the O. enterophila VJag

genome sequence and comparison to O. enterophila
DFA-19T [14] and O. turbata NRRL B-8019 genome se-
quences is shown in Fig. 3. For O. enterophila VJag the
genes encoded by the leading and the lagging strand
(outer circles 1 and 2) are marked in COG colors in the
artificial chromosome map. The third and fourth circle
show the positions of rRNA genes and tRNA genes, re-
spectively. The fifth and sixth circle show comparisons
of genes present in the strains O. enterophila VJag and
O. enterophila DFA-19T chromosome as well as O.
enterophila VJag and O. turbata NRRL B-8019 chromo-
some, respectively. The red colored regions indicate
high similarity, whereas yellow colored regions indicate
low similarity (see color code, Fig. 3). The two inner
most plots represent the GC content and the GC skew
(circle 7-8). Furthermore, a pairwise ANI analysis of the
VJag strain and type strain O. enterophila DFA-19 [14]
showed a similarity value of 99.36%, whereas a respective
analysis of VJag strain and O. turbata NRRL B-8019
resulted in 89.31% similarity.

Insights from the genome sequence
Because of the close relationship to members of the
genus Cellulomonas, O. enterophila VJag was expected
to use cellulose as carbon source. According to the
KEGG pathway, genes coding for enzymes probably re-
sponsible for the degradation of cellulose to cellobiose
and β-D-glucose were found in O. enterophila VJag. Cel-
lulose is one of the main components of plant material
and is one of the most abundant biopolymers in the en-
vironment [35]. Plate assays revealed that O. enterophila
VJag is able to utilize cellulose [Additional file 3:
Figure S1]. The used plates contained CMC as sole
carbon source and Congo red to stain CMC. O. entero-
phila VJag hydrolyzed CMC to glucose whereby the
Congo red was eluted, the red color got lost and re-
sulted in formation of bright halos around cell spots.
A gene (OJAG_15690) encoding a cellulose 1,4- β

-cellobiosidase is present in genome that converts cel-
lulose to 1,4-β-D-glucan. 1,4-β-D-glucan would be further
converted to β-D-glucose through the action of a β-
glucosidase. The genome sequence of O. enterophila VJag
comprises 13 genes encoding such β-glucosidases
(OJAG_01470, OJAG_39370, OJAG_33570, OJAG_33160,
OJAG_31620, OJAG_25090, OJAG_25070, OJAG_16840,

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Improved-high-quality draft

Two genomic libraries: 454
pyrosequencing shotgun library,
Illumina paired-end library

MIGS-28 Libraries used 1 kb insert size

MIGS 29 Sequencing platforms 454 GS FLX Titanium,
Illumina GAII

MIGS 31.2 Fold coverage 11.46 × 454, 68.28 × Illumina

MIGS 30 Assemblers MIRA 3.4 and Newbler 2.9

MIGS 32 Gene calling method Prodigal

Locus Tag OJAG

GenBank ID LRIE00000000

GenBank Date of Release 20-APR-2016

GOLD ID Gp0050669

BIOPROJECT PRJNA309230

MIGS 13 Source Material Identifier VJag

Project relevance Investigation of degradation
capabilities of O. enterophila VJag
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OJAG_16640, OJAG_15960, OJAG_15000, OJAG_14990,
OJAG_11840).
Furthermore, cellulose can be converted to cellobi-

ose, using endoglucanases (encoded by OJAG_04410;
OJAG_07660), and can also be converted to β-D-
glucose through the action of a β-glucosidase.
Starch is also ubiquitous in nature as it accumulates in

plants as storage compound [36]. The genome sequence
of O. enterophila VJag harbors genes coding for α-
amylases (OJAG_12050; OJAG_09450) and a starch
phosphorylase (OJAG_12070). Thus, starch is either

converted to glycogen, dextrin, or amylose by O. entero-
phila VJag. Starch or glycogen could also be degraded to
trehalose by respective enzymes (glycogen debranching
enzyme encoded by OJAG_00790 or OJAG_12120).
Subsequently, trehalose would be further converted to
β-D-glucose-1-phosphate or D-glucose via an α-
trehalose phosphorylase (encoded by OJAG_12210).
Dextrin would be converted to α-D-glucose by an oligo-
1,6-glucosidase (encoded by OJAG_08510). A plate assay
using Jag-MM-agar plates containing starch (2% w/v) as
carbon source showed that starch is utilized during

Fig. 3 Circular representation of the genome comparison of O. enterophila VJag with other Oerskovia strains. Outer circles 1 and 2, genes
(marked in COG colors) encoded by the leading and the lagging strand of O. enterophila VJag; circles 3 and 4, positions of rRNA and tRNA
genes, respectively; circle 5, comparison of genes present in O. enterophila VJag and O. enterophila DFA-19T; circle 6, gene comparison of
O. enterophila VJag and O. turbata NRRL B-8019; circle 7 represent the GC content circle 8; represent GC skew. Color code of genome comparison:
grey: >e-20-1; light yellow: <e-50- > e-20; gold: <e-50- > e-90; light orange: <e-90- > e-100; orange: <e-100- > e-120; red: <e-
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growth of O. enterophila VJag [Additional file 3:
Figure S2]. After incubation, starch was stained using
Lugol’s solution and bright halos around cell spots
showed starch consumption by O. enterophila VJag
(see Additional file 3: Figure S2).
Another commonly occurring compound in natural

environments besides cellulose and starch is chitin.
Chitin is a major structural polymer of the cell walls
of fungi and the exoskeletons of invertebrates [37].
Numerous genes which encode enzymes for the degrad-
ation of chitin to chitobiose or N-acetylglucosamine were
found in the genome sequence of O. enterophila VJag
(OJAG_26450; OJAG_36940; OJAG_36950; OJAG_36990;
OJAG_38030; OJAG_38450; OJAG_38460). Chitobiose
could be converted to N-acetylglucosamine or N-
acetylglucosamine-1-phosphate by hexosaminidases and
β-N-acetylhexosaminidase (encoded by OJAG_07390;
OJAG_13640; OJAG_13650; OJAG_33360; OJAG_35500;
OJAG_09950; OJAG_30030; OJAG_15920). Further-
more, one gene (OJAG_13250) was found that encodes
a glucosamine-1-phosphate N-acetyltransferase, which
converts N-acetylglucosamine-1-phosphate to UDP-
acetylglucosamine. This intermediate would be further
transformed to N-acetylglucosamine enopyruvate by
an UDP-N-acetylglucosamine-1-carboxyvinyltransfer-
ase (encoded by OJAG_15040; OJAG_22690). N-
acetylglucosamine enopyruvate can subsequently be
converted to N-acetylmuramic acid via an UDP-N-
acetylmuramate dehydrogenase (encoded by OJAG_01210).
N-acetylmuramic acid would be metabolized through the
peptidoglycan biosynthesis pathway or the D-glutamin and
D-glutamate metabolism (OJAG_14230; _ OJAG 14240).

Additionally, genes encoding enzymes for xylose degrad-
ation were found in the O. enterophila VJag genome se-
quence. D-xylose could be converted to D-xylulose by a
xylose isomerase (encoded by OJAG_26770). Furthermore,
D-xylulose would be phosphorylated to D-xylulose-5-phos-
phate via a xylulokinase (OJAG_26780). D-xylulose-5-
phosphate would be converted to D-ribulose-5-phosphate
by a ribulose-5-phosphate 3-epimerase (OJAG_00210), and
then metabolized via the pentose phosphate pathway, or
D-xylulose-5-phosphate would be converted to L-ribulose
-5-posphate via a L-ribulose-5-phosphate 4-epimerase
(OJAG_27380). This also fits into the overall picture since
xylose is a main part of hemicellulose and makes up a part
of plant materials [38].

Conclusions
The genome of O. enterophila VJag, which was isolated
from forest soil, is described. Furthermore, the phylogenetic

Table 3 Genome statistics

Attribute Value % of total

Genome size (bp) 4,535,074 100

DNA coding (bp) 4,016,676 88.57

DNA G + C (bp) 3,283,351 72.40

DNA scaffolds 85

Total genes 3975 100

Protein coding genes 3918 98.57

RNA genes 57 1.43

Pseudogenes 0 0

Genes in internal clusters 928 23.35

Genes with function prediction 3036 76,38

Genes assigned to COGs 2559 64,38

Genes with Pfam domains 3158 79,45

Genes with signal peptides 332 0,84

Genes with transmembrane helices 1142 28,73

CRISPR repeats 0 0

Table 4 Number of genes associated with general COG
functional categories

Code Value %age Description

J 199 6.92 Translation, ribosomal structure
and biogenesis

A 1 0.03 RNA processing and modification

K 290 10.08 Transcription

L 94 3.27 Replication, recombination and repair

B 1 0.03 Chromatin structure and dynamics

D 27 0.94 Cell cycle control, cell division,
chromosome partitioning

V 87 3.02 Defense mechanisms

T 131 4.55 Signal transduction mechanisms

M 134 4.66 Cell wall/membrane/envelope
biogenesis

N 11 0.38 Cell motility

U 19 0.66 Intracellular trafficking, secretion, and
vesicular transport

O 103 3.58 Posttranslational modification, protein
turnover, chaperones

C 145 5.04 Energy production and conversion

G 320 11.12 Carbohydrate transport and metabolism

E 241 8.38 Amino acid transport and metabolism

F 83 2.88 Nucleotide transport and metabolism

H 168 5.84 Coenzyme transport and metabolism

I 109 3.79 Lipid transport and metabolism

P 204 7.09 Inorganic ion transport and metabolism

Q 62 2.16 Secondary metabolites biosynthesis,
transport and catabolism

R 283 9.84 General function prediction only

S 156 5.42 Function unknown

- 1416 35.62 Not in COGs

The total is based on the total number of protein coding genes in the genome
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and phenotypic characteristics of the isolated strain are pre-
sented. It has been shown that the isolate belongs to the
family of Cellulomonadaceae. Scanning electron micro-
graphs confirmed the variable phenotype in exponential or
stationary growth phase. Genome sequences analysis re-
vealed that O. enterophila VJag has the genetic properties
to degrade compounds typically abundant in forest soils.
Plate assays showed that the isolated strain is able to use
starch and cellulose as sole carbon and energy source. The
genome sequence of O. enterophila VJag has been de-
posited at DDBJ/EMBL/GenBank and can be found
under the accession number LRIE00000000. The ver-
sion described in this paper is version LRIE01000000.

Additional files

Additional file 1: Enrichment, isolation and selection of bacterial strains;
identification of isolated strains (S1). (DOCX 15 kb)

Additional file 2: Detailed composition of Jag-MM agar and silica plates
(S2). (DOCX 17 kb)

Additional file 3: Figure S1. Jag-MM-silica plates with CMC and Congo
red; Figure S2. Jag-MM-agar plates with starch. (ZIP 964 kb)
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