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Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species 
of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the 
genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicel-
lulose, particularly with regard to the use of biomass as an alternative energy source. Here we 
describe the features of this organism, together with the complete genome sequence, and an-
notation. This is the first complete genome sequence of a member of the genus Cellulomonas, 
and next to the human pathogen Tropheryma whipplei the second complete genome se-
quence within the family Cellulomonadaceae. The 4,123,179 bp long single replicon ge-
nome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia 
of Bacteria and Archaea project. 

Introduction 
Strain 134T (DSM 20109 = ATCC 482 = JCM 1489) 
is the type strain of the species Cellulomonas flavi-
gena and was isolated from soil and first de-
scribed in 1912 by Kellerman and McBeth [1], fol-
lowed by a description in the first edition of Ber-
gey’s Manual in 1923 [2]. 
Because of the absence of a definite proof linking 
the deposited strains to the original description 
Stackebrandt and Kandler proposed in 1979 C. 
flavigena and six other Cellulomonas strains as 
neotype strains of their respective species [3]. 
Here C. flavigena cells are reported as Gram-

positive, non-motile and coryneform with snap-
ping divisions [3]. 
In addition to the type species C. flavigena, the five 
Cellulomonas species, C. biazotea, C. cellasea, C. 
gelida, C. fimi and C. uda have been members of 
the genus since their original description in the 
first edition of Bergey’s Manual in 1923 [2]. Be-
cause of the phenetic resemblance of the different 
species to each other C. flavigena was recognized 
as the only species in the genus Cellulomonas in 
the eighth edition of Bergey’s Manual. This reduc-
tion to a single species was questioned by Braden 
and Thayer based on serological studies in 1976 
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[4] and by Stackebrandt and Kandler based on 
DNA reassociation studies in 1979 [3]. In 1980 the 
Approved Lists of Bacterial Names already listed 
six species: C. flavigena, C. biazotea, C. gelida, C. 
uda, C. fimi and C. cellasea [5]. Currently, 17 spe-
cies belonging to the genus Cellulomonas are 
noted in the actual version of the List of Procaryo-
tic names with Standing in Nomenclature [6]. Due 
to the cellulolytic activity of these organisms, their 
preferred habitats are cellulose enriched envi-
ronments such as soil, bark, wood, and sugar 
fields, but they were also successfully isolated 
from rumen and from activated sludge. Here we 
present a summary classification and a set of fea-
tures for C. flavigena 134T, together with the de-
scription of the complete genomic sequencing and 
annotation. 

Classification and features 
The 16S rRNA genes of the 16 other type strains in 
the genus Cellulomonas share between 92.2% (C. 
bogoriensis [7]) and 98.1% (C. persica [8]) se-
quence identity with strain 134T, whereas the oth-
er type strains from the family Cellulomonadaceae, 
which belong to the genera Actinotalea, Oerskovia, 
Paraoerskovia and Tropheryma, share less than 

95.6% sequence identity [9]. Cultivated strains 
with highest sequence similarity include a so far 
unpublished strain 794 (Y09565) from human 
clinical specimen (99.7% sequence identity) and 
Everest-gws-44 (EU584517) from glacial meltwa-
ter at 6,350 m height on Mount Everest (98.1% 
sequence identity). The only reported uncultured 
clone with high sequence similarity (98.5%) ori-
ginated from a diet-related composition of the gut 
microbiota of the earthworm Lumbricus rubellus 
[10]. Metagenomic surveys and environmental 
samples based on 16S rRNA gene sequences deli-
vered no indication for organisms with sequence 
similarity values above 93-94% to C. flavigena, 
indicating that members of this species are not 
abundant in the so far screened habitats. The ma-
jority of these 16S rRNA gene sequences with si-
milarity between 88% and 93% originate from 
marine metagenomes (status June 2010). 
Figure 1 shows the phylogenetic neighborhood of 
C. flavigena 134T in a 16S rRNA based tree. The 
sequences of the two 16S rRNA gene copies in the 
genome differ by two nucleotides from each other 
and by up to four nucleotides from the previously 
published sequence generated from NCIMB 8073 
(Z79463). 

 
Figure 1. Phylogenetic tree highlighting the position of C. flavigena 134T relative to the other type strains within the 
family Cellulomonadaceae. The tree was inferred from 1,393 aligned characters [11,12] of the 16S rRNA gene se-
quence under the maximum likelihood criterion [13] and rooted with the type strain of the suborder Micrococcineae. 
The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are sup-
port values from 1,000 bootstrap replicates [14] if larger than 60%. Lineages with type strain genome sequencing 
projects registered in GOLD [15] are shown in blue, published genomes in bold. 
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Cells of C. flavigena stain Gram-positive with a 
very fast rate of decolorization [3]. Cells in young 
broth cultures are typically coryneform with a 
snapping division (Table 1). In week old cultures a 
transformation to short rods can occur (Figure 2) 
[3]. On yeast extract-glucose agar C. flavigena 
forms smooth, glistening, yellow colonies about 5 
mm in diameter. C. flavigena is described as non-
motile [3,28], but according to Thayer et al. (1984) 
C. flavigena cells possess polar multitrichous fla-
gella [31] (not visible in Figure 2). C. flavigena 
grows under aerobic conditions with an optimal 
growth temperature of 30°C [2] and an optimal pH 
of 7 [32]. 
Strain 134T is able to ferment glucose, maltose, 
sucrose, xylose and dextrin, but no fermentation 
of mannitol was observed [3]. While ribose, ace-
tate and gluconate are utilized, there is no utiliza-
tion of raffinose and L(+)-lactate [3]. It was shown 
by Kim et al. (1987) that gluconate is catabolized 
via the Entner-Doudoroff pathway and hexose 

monophosphate shunt [33]. C. flavigena produces 
catalase but no urease [3]. Esculin and gelatin are 
hydrolyzed and nitrate is not reduced to nitrite 
[3]. 

Chemotaxonomy 
The peptidoglycan of C. flavigena contains as the 
diagnostic amino acid in position 3 of the peptide 
subunit ornithine with the interpeptide bridge 
containing D-aspartic acid. The major cell wall 
sugar is rhamnose, whereas mannose and ribose 
occur in minor amounts [34]. The major compo-
nents of the fatty acid profile of C. flavigena are 
12-methyltetradecanoic (ai-C15:0) and hexadeca-
noic (C16:0) acids; i-C15:0, ai-C17:0, C14:0 and C15:0 oc-
cur in lower amounts [35]. Menaquinone MK-
9(H4) is the predominant isoprenoid quinone; mi-
nor amounts of MK-9(H2), MK-8(H4) and MK-7(H4) 
were detected [36]. The polar lipids consist of di-
phosphatidylglycerol, phosphatidylinositol and 
two so far unidentified phosphoglycolipids [37]. 

 

 
Figure 2. Scanning electron micrograph of C. flavigena 134T. 

http://standardsingenomics.org/�


Cellulomonas flavigena type strain (134T) 

18 Standards in Genomic Sciences 

Table 1. Classification and general features of C. flavigena 134T according to the MIGS recommendations [16]. 
MIGS ID Property Term Evidence code 

 Current classification 
 

Domain Bacteria TAS [17] 

Phylum Actinobacteria TAS [18] 

Class Actinobacteria TAS [19] 

Order Actinomycetales TAS [5,19-21] 

Family Cellulomonadaceae TAS [19,21-25] 

Genus Cellulomonas TAS [5,26,27] 

Species Cellulomonas flavigena TAS [1,5,27] 

Type strain 134  
 Gram stain positive TAS [3] 
 Cell shape coryneform with snapping division TAS [3] 
 Motility non-motile TAS [3,28] 
 Sporulation non-sporulating TAS [3] 
 Temperature range mesophile TAS [2] 
 Optimum temperature 30°C TAS [2] 
 Salinity not reported  
MIGS-22 Oxygen requirement aerobic TAS [2] 

 Carbon source 
fermentation of glucose, maltose, sucrose, 
xylose and dextrin TAS [3] 

 Energy source chemoorganotrophic TAS [3] 
MIGS-6 Habitat soil TAS [2] 
MIGS-15 Biotic relationship free living NAS 
MIGS-14 Pathogenicity non pathogenic NAS 
 Biosafety level 1 TAS [29] 
 Isolation from soil TAS [2] 
MIGS-4 Geographic location not reported  
MIGS-5 Sample collection time in 1912 or before NAS 
MIGS-4.1 
MIGS-4.2 

Latitude 
Longitude 

not reported 
not reported  

MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author 
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not di-
rectly observed for the living, isolated sample, but based on a generally accepted property for the spe-
cies, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [30]. If the 
evidence code is IDA, then the property was directly observed by one of the authors or an expert men-
tioned in the acknowledgements. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [38], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [39]. The genome project is depo-
sited in the Genome OnLine Database [15] and the 

complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 
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Table 2. Genome sequencing project information 

MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two Sanger libraries - 8 kb pMCL200 
and fosmids, one 454 pyrosequence 
standard library and one Solexa library 

MIGS-29 Sequencing platforms ABI3730, 454 Titanium, Illumina GAii 
MIGS-31.2 Sequencing coverage 9.1× Sanger; 56.28× pyrosequence 
MIGS-30 Assemblers Newbler version 1.1.02.15, PGA 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP001964 
 Genbank Date of Release May 13, 2010 
 GOLD ID Gc01326 
 NCBI project ID 19707 
 Database: IMG-GEBA 2502422318 
MIGS-13 Source material identifier DSM 20109 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
C. flavigena 134T, DSM 20109, was grown in DSMZ 
medium 92 (Trypticase-Soy-Yeast Extract Me-
dium) [40] at 30°C. DNA was isolated from 0.5-1 g 
of cell paste using Qiagen Genomic 500 DNA Kit 
(Qiagen, Hilden, Germany) following the standard 
protocol as recommended by the manufacturer. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing can be found at the JGI website. Pyrosequenc-
ing reads were assembled using the Newbler as-
sembler version 1.1.02.15 (Roche). Large Newbler 
contigs were broken into 4,499 overlapping frag-
ments of 1,000 bp and entered into assembly as 
pseudo-reads. The sequences were assigned quali-
ty scores based on Newbler consensus q-scores 
with modifications to account for overlap redun-
dancy and adjust inflated q-scores. A hybrid 
454/Sanger assembly was made using PGA as-
sembler. Possible mis-assemblies were corrected 
and gaps between contigs were closed by primer 
walks off Sanger clones and bridging PCR frag-
ments and by editing in Consed. A total of 704 
Sanger finishing reads were produced to close 
gaps, to resolve repetitive regions, and to raise the 
quality of the finished sequence. 12,171,379 Illu-
mina reads were used to improve the final con-
sensus quality using an in-house developed tool 
(the Polisher [41]). The error rate of the com-
pleted genome sequence is less than 1 in 100,000. 

Together, the combination of the Sanger and 454 
sequencing platforms provided 65.38× coverage 
of the genome. The final assembly contains 46,659 
Sanger reads and 601,307 pyrosequencing reads. 

Genome annotation 
Genes were identified using Prodigal [42] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [43]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [44]. 

Genome properties 
The genome is 4,123,179 bp long and comprises 
one main circular chromosome with a 74.3% G+C 
content (Table 3 and Figure 3). Of the 3,788 genes 
predicted, 3,735 were protein-coding genes, and 
53 RNAs; 57 pseudogenes were also identified. 
The majority of the protein-coding genes (71.1%) 
were assigned a putative function while the re-
maining ones were annotated as hypothetical pro-
teins. The distribution of genes into COGs func-
tional categories is presented in Table 4. 
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Table 3. Genome Statistics 

Attribute Value % of Total 
Genome size (bp) 4,123,179 100.00% 
DNA coding region (bp) 3,725,265 90,35% 
DNA G+C content (bp) 3,063,259 74.29% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,788 100.00% 
RNA genes 53 1.40% 
rRNA operons 6  
Protein-coding genes 3,735 98.60% 
Pseudo genes 57 1.50% 
Genes with function prediction 2,692 71.07% 
Genes in paralog clusters 435 11.48% 
Genes assigned to COGs 2,572 67.90% 
Genes assigned Pfam domains 2,758 72.81% 
Genes with signal peptides 944 24.92% 
Genes with transmembrane helices 1,004 26.50% 
CRISPR repeats 0  

 
Insights from genome sequence 
A closer look on the genome sequence of C. flavige-
na revealed a set of genes which are probably re-
sponsible for the yellowish color of C. flavigena cells 
by encoding enzymes that are involved in the syn-
thesis of carotenoids. Carotenoids are produced by 
the action of geranylgeranyl pyrophosphate syn-
thase (Cfla_2893), squalene/phytoene synthase 
(Cfla_2892), phytoene desaturase (Cfla_2891), ly-
copene cyclase (Cfla_2890, Cfla_2889) and lycopene 
elongase (Cfla_2888). Cfla_2893 is declared as a 
pseudo gene, but when ignoring the frame shift the 
deduced amino acid sequence shows significant 
similarity to geranylgeranyl pyrophosphate syn-
thases. Geranylgeranyl pyrophosphate synthases 
start the biosynthesis of carotenoids by combining 
farnesyl pyrophosphate with C5 isoprenoid units to 
C20-molecules, geranylgeranyl pyrophosphate. The 
phytoene synthase catalyzes the condensation of 
two geranylgeranyl pyrophosphate molecules fol-
lowed by the removal of diphosphate and a proton 
shift leading to the formation of phytoene. Sequen-
tial desaturation steps are conducted by the phy-
toene desaturase followed by cyclisation of the 
ends of the molecules catalyzed by the lycopene 
cyclase [45]. It is remarkable that the genes belong-
ing to the putative carotenoid biosynthesis clusters 
of Beutenbergia cavernae (Bcav_3492-Bcav_3488) 
[46], Leifsonia xyli subsp. xyli (crtE, crtB, crtI, crtYe, 

lctB, crtEb) and Sanguibacter keddieii (Sked_12750-
Sked_12800) [47] have a similar size and show the 
same organization as in the genome of C. flavigena. 
In the eighth edition of Bergey’s manual the mem-
bers of the genus Cellulomonas are described as 
motile by one or a few flagella or non-motile, even 
within the genus both characteristics occur [32]. 
Regarding the motility of C. flavigena there are dif-
ferent observations described. Thayer et al. (1984) 
report the existence of polar multitrichous flagella 
[31], whereas Stackebrandt et al. (1979) and Schaal 
(1986) reported C. flavigena as non-motile [3,48]. 
In contrast to Thayer’s observation we found no 
genes coding proteins belonging to the category 
‘flagellum structure and biogenesis’ in the genome 
sequence. Kenyon et al. (2005) report for the genus 
Cellulomonas a coherency between the production 
of curdlan, a β-1,3-glucan, and non-motility. They 
observed that the production of curdlan EPS by the 
non-motile C. flavigena leads to a closer adherence 
to cellulose and hemicellulose. In contrast, cells of 
the motile Cellulomonas strain C. gelida produce no 
curdlan EPS and are not directly attached to the 
cellulose fibers [28]. The production of curdlan by 
C. flavigena is consistent with the observation of 17 
glycosyl transferases (GT) belonging to family 2, as 
β-1,3-glucan synthases are often found in this GT 
family. 
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Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color 
by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 

 
The characteristic attribute of C. flavigena and the 
other members of the genus Cellulomonas is the 
ability to degrade cellulose, xylan and starch. The 
most molecular work has been done on cellulase 
and xylanase genes from C. fimi, but also cellulas-
es, xylanases and chitinases of C. flavigena were 
identified and characterized [49-52]. The genome 
sequence and the subsequent annotation revealed 
that 9.6% of encoded proteins are classified into 
the COG category ‘carbohydrate transport and me-
tabolism’. Among them several genes coding for 
xylan degrading enzymes; 14 genes coding for 
putative endo-1,4-β-xylanases belonging to glyco-
side hydrolase family 10 and five genes encoding 

β-xylosidases. For the hydrolysis of cellulose the 
concerted action of endo-1,4-β-glucanases, 1,4-β-
cellobiohydrolases and β-glucosidases is neces-
sary. Endo-1,4-β-glucanases randomly cleave 
within the cellulose molecule and increase the 
number of non-reducing ends which are attacked 
by 1,4-β-cellobiohydrolases. The released cellobi-
ose is cleaved by β-glucosidases. In the genome of 
C. flavigena two genes coding endo-1,4-β-
glucanases (Cfla_0016, Cfla_1897), three genes 
encoding 1,4-β-cellobiohydrolases (Cfla_1896, 
Cfla_2912, Cfla_2913) and three genes coding β-
glucosidases (Cfla_1129, Cfla_3027, Cfla_2913) 
were identified. 

http://standardsingenomics.org/�
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Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 165 5.8 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 270 9.5 Transcription 

L 146 5.2 Replication, recombination and repair 

B 1 0.0 Chromatin structure and dynamics 

D 24 0.9 Cell cycle control, mitosis and meiosis 

Y 0 0.0 Nuclear structure 

V 64 2.3 Defense mechanisms 

T 155 5.5 Signal transduction mechanisms 

M 146 5.2 Cell wall/membrane biogenesis 

N 8 0.3 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 38 1.3 Intracellular trafficking and secretion 

O 99 3.5 Posttranslational modification, protein turnover, chaperones 

C 163 5.8 Energy production and conversion 

G 272 9.6 Carbohydrate transport and metabolism 

E 209 7.4 Amino acid transport and metabolism 

F 85 3.0 Nucleotide transport and metabolism 

H 129 4.6 Coenzyme transport and metabolism 

I 93 3.3 Lipid transport and metabolism 

P 131 4.6 Inorganic ion transport and metabolism 

Q 50 1.8 Secondary metabolites biosynthesis, transport and catabolism 

R 358 12.7 General function prediction only 

S 222 7.9 Function unknown 

- 1,216 32.1 Not in COGs 
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