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Desulfobulbus propionicus Widdel 1981 is the type species of the genus Desulfobulbus, 
which belongs to the family Desulfobulbaceae. The species is of interest because of its great 
implication in the sulfur cycle in aquatic sediments, its large substrate spectrum and a broad 
versatility in using various fermentation pathways. The species was the first example of a pure 
culture known to disproportionate elemental sulfur to sulfate and sulfide. This is the first 
completed genome sequence of a member of the genus Desulfobulbus and the third pub-
lished genome sequence from a member of the family Desulfobulbaceae. The 3,851,869 bp 
long genome with its 3,351 protein-coding and 57 RNA genes is a part of the Genomic En-
cyclopedia of Bacteria and Archaea project. 

Introduction 
Strain 1pr3T "Lindhorst" (= DSM 2032 = ATCC 
33891 = VKM B-1956) is the type strain of the 
species Desulfobulbus propionicus, which is the 
type species of the genus Desulfobulbus [1,2]. The 
genus currently consists of five validly published 
named species [3]. The genus name is derived 
from the Neo-Latin word 'desulfo-' meaning 
'desulfurizing' and the Latin word 'bulbus' mean-
ing 'a bulb or an onion', yielding the 'onion-shaped 

sulfate reducer' [2]. The species epithet is derived 
from the Neo-Latin word 'acidum propionicum' 
and the Latin suffix '-icus' in the sense of 
'pertaining to'; 'propionicus' = 'pertaining to pro-
pionic acid' [2]. Strain 1pr3T "Lindhorst" was iso-
lated by Fritz Widdel in 1982 from anaerobic mud 
of a village ditch in Lindhorst near Hannover [4]. 
Other strains have been isolated from anaerobic 
mud in a forest pond near Hannover and from a 
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mud flat of the Jadebusen (North Sea) [4], from an 
anaerobic intertidal sediment in the Ems-Dollard 
estuary (Netherlands) [5], and from a sulfate-
reducing fluidized bed reactor inoculated with 
mine sediments and granular sludge [6]. Several 
studies have been carried out on the metabolic 
pathways of the strain 1pr3T [4,7,8]. Here we 
present a summary classification and a set of fea-
tures for D. propionicus strain 1pr3T, together with 
the description of the complete genomic sequenc-
ing and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain 1pr3T was compared using NCBI BLAST un-
der default settings (e.g., considering only the high-
scoring segment pairs (HSPs) from the best 250 
hits) with the most recent release of the Green-
genes database [9] and the relative frequencies, 
weighted by BLAST scores, of taxa and keywords 
(reduced to their stem [10]) were determined. The 
four most frequent genera were Desulfobulbus 
(76.1%), Desulfurivibrio (11.9%), Desulforhopalus 
(8.1%) and Desulfobacterium (3.9%) (19 hits in to-
tal). Regarding the eleven hits to sequences from 
members of the species, the average identity within 
HSPs was 95.1%, whereas the average coverage by 
HSPs was 94.7%. Regarding the nine hits to se-

quences from other members of the genus, the av-
erage identity within HSPs was 94.9%, whereas the 
average coverage by HSPs was 94.9%. Among all 
other species, the one yielding the highest score 
was Desulfobulbus elongatus, which corresponded 
to an identity of 96.9% and an HSP coverage of 
93.8%. The highest-scoring environmental se-
quence was FJ517134 (''semiarid 'Tablas de Dai-
miel National Park' wetland (Central Spain) unra-
veled water clone TDNP Wbc97 92 1 234'), which 
showed an identity of 97.8% and a HSP coverage of 
98.3%. The five most frequent keywords within the 
labels of environmental samples which yielded hits 
were 'sediment' (8.4%), 'marin' (2.9%), 'microbi' 
(2.5%), 'sea' (1.7%) and 'seep' (1.7%) (231 hits in 
total). These keywords are in line with habitats 
from which the cultivated strains of D. propionicus 
were isolated. Environmental samples which re-
sulted in hits of a higher score than the highest 
scoring species were not found. 

Figure 1 shows the phylogenetic neighborhood of 
D. propionicus in a 16S rRNA based tree. The se-
quences of the two 16S rRNA gene copies in the 
genome do not differ from each other, and differ 
by two nucleotides from the previously published 
16S rRNA sequence (AY548789). 

 

Figure 1. Phylogenetic tree highlighting the position of D. propionicus relative to the other type strains within the 
family Desulfobulbaceae. The tree was inferred from 1,425 aligned characters [11,12] of the 16S rRNA gene se-
quence under the maximum likelihood criterion [13] and rooted in accordance with the current taxonomy. The 
branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are sup-
port values from 200 bootstrap replicates [14] if larger than 60%. Lineages with type strain genome sequencing 
projects registered in GOLD [15] are shown in blue, published genomes [16] in bold. 
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The cells of D. propionicus are ellipsoidal to lemon-
shaped (1-1.3 by 1.8-2 µm) (Figure 2). D. propioni-
cus is a Gram-negative and non-sporulating bacte-
rium (Table 1) that produces fimbriae [4]. The 
temperature range for growth is between 10ºC 
and 43ºC, with an optimum at 39ºC [4]. The pH 
range for growth is between 6.0 and 8.6, with an 
optimum at pH 7.1-7.5 [4]. Strain 1pr3T is de-
scribed to be nonmotile, with no flagellum de-
tected by electron microscopy [4], although the 
genome sequence suggests it to be comprehen-
sively equipped with the genes required for flagel-
lar assembly (see below). The closely related 
strains 2pr4 and 3pr10 were motile by a single 
polar flagellum [4], suggesting either a recent mu-
tational loss of flagellar motility in strain 1pr3T, or 
a failure to express the genes under the conditions 
of growth. D. propionicus was initially described to 
be a strictly anaerobic chemoorganotroph [4]. 
Further studies a decade later indicated that this 
organism was able to grow in the presence of oxy-
gen while oxidizing sulfide, elemental sulfur, sul-
fite and polysulfide to sulfate [27], where mainly 
thiosulfate was formed from elemental sulfur 
[27,28]. D. propionicus is the first example of a 
pure culture known to disproportionate elemental 
sulfur to sulfate and sulfide [7]. But growth of D. 
propionicus with elemental sulfur as the electron 
donor and Fe(III) as a sulfide sink and/or electron 
acceptor was very slow [7]. It ferments three 
moles of pyruvate to two moles acetate and one 
mole of propionate stoichiometrically via the me-
thylmalonyl-CoA pathway [8]. Strain 1pr3T was 
also found to reduce iron to sustain growth [7]. 
Fe(III) greatly stimulated sulfate production, and 
D. propionicus produced as much sulfate in the 
absence of Mn(IV) or Fe(III) as it did with Mn(IV) 
[7]. In the absence of sulfate, ethanol is fermented 
to propionate and acetate in a molar ratio of 2:1 
[24], while i-propanol is produced during the fer-
mentation of ethanol [24]. In the presence of H2 
and CO2, ethanol is quantitatively converted to 
propionate [24]. H2-plus sulfate-grown cells of the 
strain 1pr3T were able to oxidize 1-propanol and 
1-butanol to propionate and butyrate respectively 
with the concomitant reduction of acetate plus 
CO2 to propionate [24]. Growth on H2 required 
acetate as a carbon source in the presence of CO2 
[4]. Strain 1pr3T is also able to grow mixotrophi-

cally on H2 in the presence of an organic com-
pound [24]. When the amounts of sulfate and 
ethanol are limiting, D. propionicus competes suc-
cessfully with Desulfobacter postgatei, another 
sulfate reducer [29]. Propionate, lactate, ethanol 
and propanol were used as electron donors and 
carbon sources [4]. Together with pyruvate, they 
are oxidized to acetate as an end-product [4]. Bu-
tyrate may be used in a few cases [4]. Sulfide oxi-
dation in D. propionicus is biphasic, proceeding via 
oxidation to elemental sulfur, followed by sulfur 
disproportionation to sulfide and sulfate [7,27,30]. 
However, the uncoupler tetrachlorosalicylanilide 
(TCS) and the electron transport inhibitor myxo-
thiazol inhibited sulfide oxidation to sulfate and 
caused accumulation of sulfur [30]. But in the 
presence of the electron transport inhibitor 2-n-
heptyl-4-hydroxyquinoline-N-oxide (HQNO), sul-
fite and thiosulfate were formed [30]. When 
grown on lactate or pyruvate, the strain 1pr3T is 
able to grow without an external electron acceptor 
and formed propionate and acetate as fermenta-
tion products [4,31]. For this purpose, the sub-
strates are fermented via the methylmalonyl-CoA 
pathway [31]. In the cells of D. propionicus, the 
activities of methylmalonyl-CoA: pyruvate tran-
scarboxylase, a key enzyme of methylmalonyl-CoA 
pathway, as well as the other enzymes (pyruvate 
dehydrogenase, succinate dehydrogenase and ma-
late dehydrogenase) involved in the pathway were 
detected [31]. D. propionicus can convert not only 
pyruvate but also alcohols via methylmalonyl-CoA 
pathway in the absence of sulfate [24,32,33]. Inor-
ganic pyrophosphatase was present in strain 
1pr3T at high levels of activity, but the enzyme 
was Mg2+-dependent and stimulated by Na2S2O4 
[34]. However, isocitrate lyase and pyrophos-
phate-dependent acetate kinase were not detected 
[34]. Sulfate, sulfite and thiosulfate serve as elec-
tron acceptors and are reduced to H2S, but not 
elemental sulfur, malate, fumarate [4]. Nitrate also 
served as electron acceptor and was reduced to 
ammonia [4,27]. Acetate, valerate, higher fatty ac-
ids, succinate, fumarate, malate, sugars are not 
utilized [4]. Strain 1pr3T requires 4-aminobenzoic 
acid as growth factor [4,6]. Cell membrane and 
cytoplasmic fraction contain b- and c-type cytoch-
romes [4]. 
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Figure 2. Scanning electron micrograph of D. propionicus 1pr3T 

Chemotaxonomy 
Odd-chain fatty acids predominated in the fatty 
acid profile of the strain 1pr3T (77% of the total 
fatty acids vs. 23% for the even-chain fatty acids) 
[35,36], reflecting the use of propionate as a chain 
initiator for fatty acid biosynthesis [35]. The major 
fatty acids, when grown on propionate, were 
found to be C17:1ω6 (51.5%), C15:0 (28.3%), C16:0

(6.9%), C14:0 (5.2%), C18:0 (3.1%), C15:1 ω6 and C16:1 

ω5, (2.4% each) and C18:1 ω7 (2.1%). The minor fatty 
acids were C17:0 (0.6% of the total fatty acids), C16:1 

ω7 (0.9%), C18:1 ω9 and C15:1Δ7 (1.0% each), C12:0

(1.3%), C17:1 ω8 (1.6%) and C13:0 (1.7%) [36]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [37], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-

haea project [38]. The genome project is depo-
sited in the Genomes OnLine Database [15] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Growth conditions and DNA isolation 
D. propionicus 1pr3T, DSM 2032, was grown anae-
robically in DSMZ medium 194 (Desulfobulbus 
medium) [39] at 37°C. DNA was isolated from 0.5-
1 g of cell paste using MasterPure Gram-positive 
DNA purification kit (Epicentre MGP04100) fol-
lowing the standard protocol as recommended by 
the manufacturer, with modification st/LALM for 
cell lysis as described in Wu et al. [38]. DNA is 
available through the DNA Bank Network [40,41]. 
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Table 1. Classification and general features of D. propionicus 1pr3T according to the MIGS recommendations [17]. 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [18] 

Phylum Proteobacteria TAS [19] 

Class Deltaproteobacteria TAS [20,21] 

Order Desulfobacterales TAS [20,22] 

Family Desulfobulbaceae TAS [20,23] 

Genus Desulfobulbus TAS [1,2] 

Species Desulfobulbus propionicus TAS [1,2] 

Type strain 1pr3 TAS [4] 

 Gram stain negative TAS [4] 

 Cell shape ellipsoidal to lemon-shaped TAS [4] 

 Motility non-motile TAS [4] 

 Sporulation none TAS [4] 

 Temperature range 10°C-43°C TAS [4] 

 Optimum temperature 39°C TAS [4] 

 Salinity not reported NAS 

MIGS-22 Oxygen requirement anaerobic TAS [4] 

 Carbon source propionate, lactate, ethanol, propanol, pyruvate TAS [4,6] 

 Energy source chemoorganotroph TAS [4] 

MIGS-6 Habitat anaerobic freshwater sediments TAS [24] 

MIGS-15 Biotic relationship not reported NAS 

MIGS-14 Pathogenicity not reported NAS 

 Biosafety level 1 TAS [25] 

 Isolation anaerobic mud TAS [4] 

MIGS-4 Geographic location Lindhort near Hannover, Germany TAS [4] 

MIGS-5 Sample collection time 1980 or before NAS 

MIGS-4.1 Latitude 52.38 NAS 

MIGS-4.2 Longitude 9.82 NAS 

MIGS-4.3 Depth not reported NAS 

MIGS-4.4 Altitude not reported NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from of the Gene Ontology project [26]. If the evidence code is IDA, then 
the property was directly observed by one of the authors or an expert mentioned in the acknowledgements. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries:one 454 pyrosequence standard library, one 454 PE 
library (12 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 109.7 × Illumina; 37.9 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.0.00.20- PostRelease-11-05-2008-gcc-3.4.6, Velvet, phrap 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002364 
 Genbank Date of Release January 28, 2011 
 GOLD ID Gc01599 
 NCBI project ID 32577 
 Database: IMG-GEBA 2503538026 
MIGS-13 Source material identifier DSM 2032 
 Project relevance Tree of Life, GEBA 

 
Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 sequencing platforms. All general 
aspects of library construction and sequencing can 
be found at the JGI website [42]. Pyrosequencing 
reads were assembled using the Newbler assemb-
ler version 2.0.00.20-PostRelease-11-05-2008-gcc-
3.4.6 (Roche). The initial Newbler assembly con-
sisting of 35 contigs in two scaffolds was converted 
into a phrap [43] assembly by making fake reads 
from the consensus, to collect the read pairs in the 
454 paired end library. Illumina GAii sequencing 
data (327Mb) was assembled with Velvet [44] and 
the consensus sequences were shredded into 1.5 kb 
overlapped fake reads and assembled together 
with the 454 data. The 454 draft assembly was 
based on 145.0 Mb 454 draft data and all of the 454 
paired end data. Newbler parameters are -consed -
a 50 -l 350 -g -m -ml 20. The Phred/Phrap/Consed 
software package [43] was used for sequence as-
sembly and quality assessment in the subsequent 
finishing process. After the shotgun stage, reads 
were assembled with parallel phrap (High Perfor-
mance Software, LLC). Possible mis-assemblies 
were corrected with gapResolution [42], Dupfi-
nisher [45], or sequencing cloned bridging PCR 
fragments with subcloning or transposon bombing 
(Epicentre Biotechnologies, Madison, WI). Gaps 
between contigs were closed by editing in Consed, 
by PCR and by Bubble PCR primer walks (J.-
F.Chang, unpublished). A total of 563 additional 
reactions and five shatter libraries were necessary 
to close gaps and to raise the quality of the finished 
sequence. Illumina reads were also used to correct 
potential base errors and increase consensus quali-

ty using a software Polisher developed at JGI [46]. 
The error rate of the completed genome sequence 
is less than 1 in 100,000. Together, the combination 
of the Illumina and 454 sequencing platforms pro-
vided 147.6 × coverage of the genome. The final 
assembly contained 475,513 pyrosequence and 
11,740,513 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [47] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [48]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [49]. 

Genome properties 
The genome consists of a 3,851,869 bp long chro-
mosome with a GC content of 58.9% (Table 3 and 
Figure 3). Of the 3,408 genes predicted, 3,351 were 
protein-coding genes, and 57 RNAs; 68 pseudogenes 
were also identified. The majority of the protein-
coding genes (70.5%) were assigned with a putative 
function while the remaining ones were annotated 
as hypothetical proteins. The distribution of genes 
into COGs functional categories is presented in Table 
4.
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Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand (color 
by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 3,851,869 100.00% 

DNA coding region (bp) 3,410,010 88.53% 

DNA G+C content (bp) 2,269,813 58.93% 

Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,408 100.00% 

RNA genes 57 1.67% 

rRNA operons 2  
Protein-coding genes 3,351 98.33% 

Pseudo genes 68 2.00% 

Genes with function prediction 2,402 70.48% 

Genes in paralog clusters 492 14.44% 

Genes assigned to COGs 2,502 73.42% 

Genes assigned Pfam domains 2,623 76.97% 

Genes with signal peptides 1,073 31.48% 

Genes with transmembrane helices 812 23.83% 

CRISPR repeats 1  
 

Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 155 5.6 Translation, ribosomal structure and biogenesis 
A 1 0.1 RNA processing and modification 
K 128 4.6 Transcription 
L 154 5.6 Replication, recombination and repair 
B 5 0.2 Chromatin structure and dynamics 
D 28 1.0 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 45 1.6 Defense mechanisms 
T 297 10.8 Signal transduction mechanisms 
M 184 6.7 Cell wall/membrane/envelope biogenesis 
N 106 3.8 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 83 3.0 Intracellular trafficking and secretion, and vesicular transport 
O 106 3.8 Posttranslational modification, protein turnover, chaperones 
C 274 9.9 Energy production and conversion 
G 96 3.5 Carbohydrate transport and metabolism 
E 185 6.7 Amino acid transport and metabolism 
F 66 2.4 Nucleotide transport and metabolism 
H 145 5.3 Coenzyme transport and metabolism 
I 74 2.7 Lipid transport and metabolism 
P 123 4.5 Inorganic ion transport and metabolism 
Q 40 1.5 Secondary metabolites biosynthesis, transport and catabolism 
R 274 9.9 General function prediction only 
S 195 7.1 Function unknown 
- 906 26.6 Not in COGs 
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