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Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum 
(Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 
4-O-methylglucuronoxylan, the predominant structural component of hardwood 
hemicelluloses. A basis for this capability was first supported by the identification of genes 
and characterization of encoded enzymes and has been further defined by the sequencing 
and annotation of the complete genome, which we describe. In addition to genes implicated 
in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other 
hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 
bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent 
are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The 
prevalence and organization of these genes support a metabolic potential for bioprocessing of 
hemicellulose fractions derived from lignocellulosic resources. 

Introduction 
Paenibacillus sp. strain JDR-2 (Pjdr2) was isolated 
from wafers cut from live stems of sweet gum 
(Liquidambar styraciflua) placed in soil in an area 
populated predominantly by this tree species. The 
ability of this isolate to grow on 4-O-
methylglucuronoxylose (MeGX) as the sole carbon 
source identified a metabolic potential not 
previously described. MeGX is released along with 
fermentable xylose during dilute acid pretreatment 
of lignocellulosic biomass. Since MeGX may 
represent 5 to 20% of the hemicellulose components 
from hardwoods and agricultural residues, this 
ability was of interest for increasing bioconversion 
yields of fermentable sugars from these resources 
[1,2]. 

Growth rates and yields of Pjdr2 with polymeric 4-
O-methylglucuronoxylan (MeGXn) as substrate 
were much greater than with monosaccharides and 
oligosaccharides derived from MeGXn. These 
increases are presumably the result of a cell-
associated multimodular GH10 endoxylanase that 
generates xylobiose, xylotriose, and the 
aldouronate, 4-O-methylglucuronoxylotriose 
(MeGX3), for direct assimilation and metabolism 
[2]. A cluster of genes was cloned and sequenced 
from Pjdr2 genomic DNA which contained two 
genes encoding transcriptional regulators, three 
genes encoding ABC transporters, and three 
sequential structural genes lacking secretion 
sequences encoding a GH67 α-glucuronidase, a 
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GH10 endoxylanase catalytic domain and a putative 
GH43 β-xylosidase. The expression of these genes, 
as well as a distal gene encoding a secreted cell-
associated multimodular GH10 endoxylanase, was 
coordinately responsive to inducers and 
repressors, leading to their collective designation 
as a xylan-utilization regulon [3]. Physiological 
studies defining the preferential utilization of 
MeGXn compared to MeGX and MeGX3 support a 
process in which extracellular depolymerization, 
assimilation and intracellular metabolism are 
coupled, allowing the rapid and complete 
utilization of MeGXn [4]. 

Pjdr2 was the first member of this genus to have its 
genome completely sequenced and made available 
for detailed analysis. The sequences of genomes of 
2 strains of Paenibacillus polymyxa [5,6], 
“Paenibacillus vortex” [7], and Paenibacillus sp. 
Y412MC10 (NCBI NC_013406.1, unpublished 
results) have since been completed. The incomplete 
genome sequence Paenibacillus larvae subsp. 
larvae, the causative agent of American Foulbrood 
disease of honey bees, has also been analyzed [8]. 

Classification and features 
A  phylogenetic tree was constructed using the 
Neighbor-Joining method [9] for complete 
sequences of genes encoding 16S rRNA derived 
from sequenced genomes of Paenibacillus spp., 
along with the sequences of some members of the 
Bacillus spp., Microbacterium spp. and Clostridium 
spp, is presented in Figure 1. The sequence of the 
gene encoding 16S rRNA (AF355462) from 
Paenibacillus polymyxa PKB1 is included as 
representative of the type species of the genus [10]. 

The unrooted phylogenetic tree shows Pjdr2 in a 
branch that includes other Paenibacillus spp. in this 
comparison, supporting a lineage distinct from 
other Gram positive endospore-forming bacteria. 
Pjdr2 groups more closely with Paenibacillus 
lentimorbus and other Paenibacillus species that are 
insect pathogens than it does with another group 
that includes type species Paenibacillus polymyxa. 
From the standpoint of genome size and imputed 
metabolic potential based on sequence, it is 
surprising, based on 16S sequence, that it is not 
more closely related to Paenibacillus sp. Y412MC10. 
Despite a close similarity of Paenibacillus JDR-2 to 
Microbacterium species with respect to membrane 
fatty acids (see discussion below), it is clear that it 

is not related to members of the genus 
Microbacterium on the basis of 16S rRNA sequence. 
When grown on oat spelt xylan agar plates [2], 
colonies of strain Pjdr2 are white with smooth 
edges, surrounded by clearing zones resulting 
from the depolymerization of the xylan. This 
property was routinely used to monitor the purity 
of Pjdr2 cultures. As shown in Figure 2, cells of 
Pjdr2 are rod shaped, with swellings suggestive of 
sporulation. The properties evaluated for 
classification allows assignment as an endospore-
forming bacterium in the phylum Firmicutes and 
genus Paenibacillus as noted in Table 1. 

Chemotaxonomy 
The fatty acid methyl esters analysis (FAME) of 
Pjdr2 provided an alternative approach for 
determination of relatedness to other bacteria. 
Cultures were grown to exponential phase (24 
hrs) on Trypticase soy agars. Bacterial cells were 
harvested and extracted according to the standard 
MIDI protocol [26]. FAME analysis was conducted 
using the Sherlock Microbial Identification System 
4.5 [27]. Analyses showed that the predominant 
fatty acid in Pjdr2 is anteiso-C15:0 (46.93%), which 
in addition to iso-C16:0 (23.02%) and C16:0 
(13.48%), constituted >80% of the fatty acid 
composition of this strain. Minor fatty acids 
included iso-C14:0 (3.92%), C14:0 (2.35%), and iso-
C15:0 (5.29%). 

Strains with a similarity index (SI) value of 0.5 or 
higher indicate a good library comparison (MIDI 
2002). The two strains that most closely match the 
profile of Pjdr2 are Microbacterium laevaniformans 
(SI = 0.75) and Cellulobacterium cellulans (SI = 
0.51). We have included these two species in our 
phylogenetic analysis based upon their 16S rRNA 
sequences (Figure 1). The FAME analysis provided 
a rapid assignment of the species by comparing the 
fatty acid profile(s) with 60 strains (42 species) of 
Bacillus, 2 strains (1 species) of Cellulobacterium, 
20 strains (19 species) of Microbacterium and 20 
strains (18 species) of Paenibacillus, as well as 
other aerobic bacteria. Sequence analysis of 16S 
rRNA provides the acceptable basis for considering 
phylogenetic relationships. Nevertheless the FAME 
analysis provides a convenient method with which 
to confirm the identity of the organism as it is 
maintained and studied over time. 
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Figure 1. Phylogenetic analysis of Paenibacillus sp. JDR-2 was performed using MEGA4 [9] with the 
Neighbor-Joining method (bootstrap: 2,000 replicates). The species and GenBank accession numbers 
are: Paenibacillus larvae subsp. pulvifaciens DSM 3615 (AB073204); Bacillus halodurans C-125 
(BA000004); Bacillus subtilis subsp. subtilis str. 168 (AL009126); Bacillus clausii KSM-K16 (AP006627); 
Bacillus licheniformis DSM 13 (AE017333); Bacillus megaterium str. KL-197 (AY030338); Bacillus 
stearothermophilus (AB021196); Paenibacillus lentimorbus (AB110988); Paenibacillus popilliae str. 
ATCC14706(T), (AF071859); Paenibacillus thiaminolyticus (D78475); Paenibacillus nematophilus str. 
NEM1b (AF480937); Paenibacillus polymyxa (AF355463); Paenibacillus peoriae DSM 8320 (AB073186); 
Paenibacillus polymyxa SC2 (CP002213); Paenibacillus sp. JDR-2 (CP001656); Paenibacillus sp. 
Y412MC10 (CP001793); “Paenibacillus vortex” str. V453 (HQ005270); Clostridium difficile 630 
(AM180355); Clostridium polysaccharolyticum DSM 1801 (X71858); Clostridium acetobutylicum DSM 
1731 (X78071); Clostridium pasteurianum (M23930); Microbacterium testaceum StLB037 (AP012052); 
Microbacterium laevaniformans str. C820 (NR_036839); Microbacterium luteolum DSM 20143 
(Y17235); Cellulosimicrobium cellulans str. ZFJ-17 (EU931556). 
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Table 1. Classification and general features of Paenibacillus sp. JDR-2 according to the MIGS recommendations [11]. 
MIGS ID Property Term Evidence code 
  Domain Bacteria TAS [12] 

  Phylum Firmicutes TAS [13,14] 

  Class Bacilli TAS [15,16] 

 Current classification Order Bacillales TAS [17,18] 

  Family Paenibacillaceae TAS [16,19] 

  Genus Paenibacillus TAS [20-24] 

  Species Paenibacillus sp. Strain JDR-2 TAS [2] 

 Gram stain Positive NAS 

 Cell shape Rod-shaped NAS 

 Sporulation Spore-forming NAS 

 Temperature range Mesophile, TAS [2] 

 Optimum temperature 30°C TAS [2] 

 Salinity   

MIGS-22 Oxygen requirement Aerobic IDA 

 

Carbon source 
Glucose, xylose, β-1,4-xylan, β-1,4-1,3-glucan, 4-O-
methyl-glucuronoxylose 

TAS [2] 

 Energy source chemoorganotrophic  

MIGS-6 Habitat Sweet Gum stem wood TAS [2] 

MIGS-15 Biotic relationship Free living TAS [2] 

MIGS-14 Pathogenicity Non pathogenic NAS 

 Biosafety level 1 NAS 

 Isolation Sweet Gum stem wood in soil TAS [2] 

MIGS-4 Geographic location Florida TAS [2] 

MIGS-5 Sample collection time 2000  TAS [2] 

MIGS-4.1 Latitude 29.4° TAS 

MIGS-4.2 Longitude 82.3° TAS 

MIGS-4.3 Depth 1 inch TAS [2] 

MIGS-4.4 Altitude 180 feet above msl NAS 

Evidence codes – IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., 
a direct report exists in the literature); NAS: Non-traceable author statement (i.e., not directly observed for the 
living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). 
Evidence codes are from the Gene Ontology project [25]. 
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Figure 2. Scanning electron micrographs of Paenibacillus sp. JDR-2. Panel (a) is representative of the bacilli 
harvested in the vegetative state and panel (b) indicates individuals with expanded midsections which are entering 
the sporulation phase. Pjdr2 cells were grown in Luria Broth and harvested by centrifugation at the exponential 
growth phase (a) and post exponential phase (b), the pellets washed with water 3 times and prepared for scanning 
electron microscopy by the Electron Microscopy and Bio-Imaging laboratory, ICBR of the University of Florida. 

Growth conditions and DNA isolation 
For the preparation of genomic DNA, one of 
several colonies surrounded by a clear zone was 
picked from an agar plate (0.1% oat spelt xylan/ 
0.1% yeast extract/ Zucker-Hankin medium [2], 
and grown in Zucker-Hankin/1% yeast extract at 
30°C with shaking at 240 rpm. A culture (8 ml) at 
0.6 OD600nm was inoculated into 48 ml of culture 
media (Zucker-Hankin, 1% yeast extract). The 
latter was grown to 0.6 OD600nm and cells were 
collected by centrifugation. High molecular weight 
DNA was prepared from these cells as per the 
protocol provided by JGI. Cells were suspended in 
TE buffer (10 mM Tris-HCl, 1.0 mM EDTA), pH 8.0 
and treated with lysozyme to lyse the cell wall. 
SDS and Proteinase K were added to denature and 
degrade proteins. NaCl and CTAB were added to 
facilitate subsequent precipitation. Cell lysates 
were extracted with phenol and chloroform and 
the DNA was precipitated by addition of 
isopropanol. The nucleic acid pellet was washed 
with 70% ethanol, dissolved in water and then 
treated with RNase A. 

Genome sequencing and assembly 
The genome of Pjdr2 was sequenced at the JGI 
using a combination of 8 kb and 40 kb (fosmid) 
DNA libraries. In addition to Sanger sequencing, 
454 pyrosequencing [28] was performed to a 

depth of 20× coverage. All general aspects of 
library construction and sequencing performed at 
the JGI can be found at the JGI website [29]. Draft 
assemblies were based on 39,689 total reads. All 
three libraries provided 5.1× coverage of the 
genome. The Phred/Phrap/Consed software 
package [30] was used for sequence assembly and 
quality assessment [31-33]. After the shotgun 
stage, reads were assembled with parallel phrap 
(High Performance Software, LLC). Possible mis-
assemblies were corrected with Dupfinisher [34] 
or transposon bombing of bridging clones 
(Epicentre Biotechnologies, Madison, WI). Gaps 
between contigs were closed by editing in Consed, 
custom primer walk, or PCR amplification (Roche 
Applied Science, Indianapolis, IN). A total of 1,028 
additional reactions were necessary to close gaps 
and to raise the quality of the finished sequence. 
The completed sequence analysis of Pjdr2 
contained 45,057 reads, achieving an average of 
5.5-fold sequence coverage per base, with an error 
rate less than 1 in 100,000. The complete 
nucleotide sequence of Paenibacillus sp. strain 
JDR-2 and its annotation can be found online at 
the IMG (Integrated Microbial Genome) portal of 
JGI [35], as well as at the genome resource site of 
NCBI [36]. 
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Genome annotation 
Genes were identified using Prodigal [37] as part of 
the Oak Ridge National Laboratory genome 
annotation pipeline, followed by manual curation 
using the JGI program GenePRIMP [38]. The 
predicted CDSs were translated and searched with 
the following databases to assign a product 
description for each predicted protein: the National 

Center for Biotechnology Information (NCBI) 
nonredundant database, UniProt, TIGRFam, Pfam, 
PRIAM, KEGG, COG, and InterPro. Non-coding genes 
and miscellaneous features were predicted using 
tRNAscan-SE [39], RNAMMer [38], Rfam [40], 
TMHMM [41], and SignalP [42]. Genome statistics 
are provided in Table 2, and a full circular map in 
Figure 3 below. 

 
Figure 3. Circular map of the genome of Paenibacillus sp JDR-2. Labeling from the outside circle towards the 
inside circles: circle 1. Nucleotide numbering system; circle 2 and 3. Predicted coding sequences on the forward 
strand and on the reverse strand with each gene colored by its assigned COG category; circle 4. RNA genes 
(tRNAs in green, rRNAs in red, other RNAs in black); circle 5. GC content; circle 6. GC skew. 
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Table 2. Genomic Statistics 
Attribute Value % of Total 
Genome size (bp) 7,184,930 100.00% 
DNA coding region (bp) 6,384,736 88.86% 
DNA G+C content (bp) 3,612,449 50.28% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 6,410 100.00% 
RNA genes 122 1.90% 
rRNA genes 35 0.55% 
Protein coding genes 6,288 98.10% 
Pseudo Genes 75 1.17% 
Genes with function prediction 4,737 73.90% 
Protein coding genes with COGs 4,667 72.81% 
Protein coding genes with Pfam 5,128 80.00% 
Genes in paralog clusters 1,614 25.18% 
Protein coding genes coding signal peptides 1,629 25.41% 
Genes connected to transporter classification 1,090 17.00% 

Insights from genome sequencing 
Utilization of lignocellulosics 
The nucleotide sequence of a cluster of genes which 
included the α-glucuronidase gene served as a 
marker for the sequenced genome. The sequence of 
this cluster was previously determined in a cosmid 
clone of the genomic DNA of Pjdr2. The presence of 
this unique contiguous sequence in a single copy 
without orthologs or paralogs supported the final 
genomic sequence as representative of a single 
genome from a pure culture. This aldouronate-
utilization gene cluster, in conjunction with the 
distal gene encoding a multimodular cell-associated 
GH10 endoxylanase, constitutes a xylan-utilization 
regulon as previously defined [3]. The coordinate 
expression of the genes in this regulon supports a 
process in which assimilation of the aldouronate, 4-
0-methylglucuronoxylotriose, generated by a cell-
associated GH10 endoxylanase, is coupled to 
extracellular depolymerization, facilitating  

depolymerization, assimilation and metabolism as 
previously described [4]. The sequencing of the 
genome of Paenibacillus sp. strain JDR-2 has allowed 
further analysis of its xylan-utilization regulon and 
the identification of similar regulons involved in the 
depolymerization and utilization of soluble β-
glucans. 

A noteworthy feature of the genome of Pjdr2 is the 
large number (874) of genes involved in 
carbohydrate metabolism and transport constituting 
17% of the genome (Table 3). This characteristic 
contrasted with 9% and 291 genes in Bacillus subtilis 
subtilis 168 and 11% and 481 genes in Paenibacillus 
polymyxa E861. The recently completed genome 
Paenibacillus sp. Y412MC10, however, is quite 
similar to Pjdr2 and contains 16% and 828 genes in 
this category. 

Table 3. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 199 3.89 Translation, ribosomal structure and biogenesis 
A - - RNA processing and modification 
K 580 11.34 Transcription 
L 149 2.91 Replication, recombination and repair 
B 1 0.02 Chromatin structure and dynamics 
D 36 0.70 Cell cycle control, cell division, chromosome partitioning 
Y - - Nuclear structure 
V 104 2.03 Defense mechanisms 
T 426 8.33 Signal transduction mechanisms 
M 255 4.98 Cell wall/membrane/envelope biogenesis 
N 70 1.37 Cell motility 
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Table 3 (cont.) Number of genes associated with the general COG functional categories 
Code value %age Description 

Z 1 0.02 Cytoskeleton 
W - - Extracellular structures 
U 57 1.11 Intracellular trafficking, secretion, and vesicular transport 
O 116 2.27 Posttranslational modification, protein turnover, chaperones 
C 180 3.52 Energy production and conversion 
G 874 17.08 Carbohydrate transport and metabolism 
E 316 6.18 Amino acid transport and metabolism 
F 115 2.25 Nucleotide transport and metabolism 
H 151 2.95 Coenzyme transport and metabolism 
I 120 2.35 Lipid transport and metabolism 
P 273 5.34 Inorganic ion transport and metabolism 
Q 99 1.94 Secondary metabolites biosynthesis, transport and catabolism 
R 613 11.98 General function prediction only 
S 381 7.45 Function unknown 
- 1,743 27.19  Not in COGs 
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