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Halopiger xanaduensis is the type species of the genus Halopiger and belongs to the 
euryarchaeal family Halobacteriaceae. H. xanaduensis strain SH-6, which is designated as 
the type strain, was isolated from the sediment of a salt lake in Inner Mongolia, Lake 
Shangmatala. Like other members of the family Halobacteriaceae, it is an extreme halophile 
requiring at least 2.5 M salt for growth. We report here the sequencing and annotation of the 
4,355,268 bp genome, which includes one chromosome and three plasmids. This genome is 
part of a Joint Genome Institute (JGI) Community Sequencing Program (CSP) project to 
sequence diverse haloarchaeal genomes. 

Introduction 
Halopiger xanaduensis is the type species of the 
genus Halopiger, and strain SH-6 is the type strain 
of the species. It was isolated from the sediment of 
a salt lake, Lake Shangmatala, in Inner Mongolia, 
China [1]. The name Halopiger refers to its slow 
growth in the laboratory. There is one other 
described species in the genus Halopiger, H. 
aswanensis, which was isolated from a saline soil 
in Egypt [2]. We report here the first genome 
sequence from the genus Halopiger. 

Classification and features 
 In 16S rRNA trees the Halopiger species are most 
closely related to Natronolimnobius species [1,2]. 
Currently there are fifteen complete genomes of 
haloarchaea in GenBank. Figure 1 shows the 
relationship of H. xanaduensis to other 
haloarchaea for which complete genomes have 
been sequenced. For Halobacterium salinarum and 
Haloquadratum walsbyi, only one sequence is 
included in Figure 1, although for both of these 
species two genomes have been sequenced. 

H. xanaduensis was isolated from a sediment 
sample of Lake Shangmatala in Inner Mongolia, 
China. The sample was enriched in liquid medium 
containing salts and yeast extract; the culture was 
then plated on agar to obtain pure colonies [1]. At 
the time of sample collection, the salinity of the 
lake was 16.7%, the temperature was 21.8°C, and 
the pH was 8.5 [1]. The cells were pleomorphic 
with the most common shape being rods. Motility 
was not observed [1]. An electron micrograph is 
shown in Figure 2. Growth was observed between 
28 and 45°C with an optimum at 37°C [1]. The pH 
range for growth was 6.0-11.0 with an optimal pH 
of 7.5-8.0 [1]. Growth occurred within a salinity 
range of 2.5 M to 5.0 M NaCl and was optimal at 
4.3M NaCl [1]. The organism is strictly aerobic but 
was able to reduce nitrate and nitrite with 
production of gas [1]. Several sugars and amino 
acids can serve as sole carbon and energy sources, 
and amino acids are not required in the growth 
medium [1]. The features of the organism are 
listed in Table 1. 
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Figure 1. Phylogenetic tree showing the relationships between haloarchaea with sequenced genomes. The 
sequences were aligned with the Ribosomal Database Project (RDP) aligner [3], which uses the Jukes-Cantor 
corrected distance model to construct a distance matrix based on alignment model positions without the use of 
alignment inserts, and uses a minimum comparable position of 200. The tree was generated with the Tree Builder 
from the RDP which uses Weighbor [4] with an alphabet size of 4 and length size of 1,000. The building of the tree 
also involves a bootstrapping process repeated 100 times to generate a majority consensus tree. Methanosarcina 
acetivorans was used as the outgroup. 

 

 
Figure 2. Electron micrograph of H. xanaduensis SH-6T. 
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Table 1. Classification and general features of H. xanaduensis in accordance with the MIGS 
recommendations [5]. 

MIGS ID Property Term Evidence codea 
 

 Domain Archaea TAS [6] 
 

 Phylum Euryarchaeota TAS [7] 
 

 Class Halobacteria TAS [8,9] 
 

Current classification Order Halobacteriales TAS [10-12] 
 

 Family Halobacteriaceae TAS [13,14] 
 

 Genus Halopiger TAS [1] 
 

 Species Halopiger xanaduensis TAS [1] 
 

 Type strain SH-6 TAS [1] 
 

Cell shape pleomorphic, mostly rods TAS [1] 
 

Motility nonmotile TAS [1] 
 

Sporulation nonsporulating NAS 
 

Temperature range 28-45°C TAS [1] 
 

Optimum temperature 37°C TAS [1] 
MIGS-6.3 

Salinity 2.5-5.0 M NaCl (optimum 4.3M) TAS [1] 
MIGS-22 

Oxygen requirement aerobe TAS [1] 
 

Carbon source sugars or amino acids TAS [1] 
 

Energy metabolism heterotrophic TAS [1] 
MIGS-6 

Habitat salt lake sediment TAS [1] 
MIGS-15 

Biotopic relationship free-living TAS [1] 
MIGS-14 

Pathogenicity none NAS 
 

Biosafety level 1 NAS 
 

Isolation sediment of Lake Shangmatala TAS [1] 
MIGS-4 

Geographic location Inner Mongolia, China TAS [1] 
MIGS-5 

Isolation time before 2007 TAS [1] 
MIGS-4.1  

Latitude 43.2  TAS [1] 
MIGS-4.2 

Longitude 114.017 TAS [1] 
MIGS-4.3 

Depth not reported  
MIGS-4.4 

Altitude not reported  

a) Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the 
literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, 
isolated sample, but based on a generally accepted property for the species, or anecdotal 
evidence). These evidence codes are from the Gene Ontology project [15]. 
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Genome sequencing information 
Genome project history 
H. xanaduensis was selected for sequencing as part 
of a JGI CSP project to sequence a representative 
from every genus of haloarchaea. The genome 
project is listed in the Genomes On Line Database 
[16], and the complete genome sequence has been 
deposited in GenBank. Sequencing was carried out 
at the JGI Production Genomics Facility (PGF). 
Finishing was done at Los Alamos National 
Laboratory. Annotation was done at both the PGF 
and Oak Ridge National Laboratory. Table 2 
presents the project information and its 
association with MIGS version 2.0 compliance [5]. 

Growth conditions and DNA isolation 
Cells were grown in DSMZ medium 372 (Halobacteria 
medium) [17] at 37°C. DNA was isolated from 1.0-1.5 
g cell paste with the MasterPure Gram Positive DNA 
Purification Kit (Epicentre). 

Genome sequencing and assembly 
The draft genome of Halopiger xanaduensis SH-6 
was generated at the DOE Joint genome Institute 
(JGI) using a combination of Illumina [18] and 454 
technologies [19]. For this genome we constructed 
and sequenced an Illumina GAII shotgun library 
which generated 55,857,474 reads totaling 4,245.2 
Mb, a 454 Titanium standard library which 
generated 159,242 reads, and 1 paired end 454 
library with an average insert size of 8 kb which 
generated 341,165 reads totaling 141.8 Mb of 454 
data. All general aspects of library construction and 
sequencing performed at the JGI can be found at 
the JGI website [20]. The initial draft assembly 

contained 15 contigs in 2 scaffolds. The 454 
Titanium standard data and the 454 paired end 
data were assembled together with Newbler, 
version 2.3-PreRelease-6/30/2009. The Newbler 
consensus sequences were computationally 
shredded into 2 kb overlapping fake reads (shreds). 
Illumina sequencing data was assembled with 
VELVET, version 1.0.13 [21], and the consensus 
sequences were computationally shredded into 1.5 
kb overlapping fake reads (shreds). We integrated 
the 454 Newbler consensus shreds, the Illumina 
VELVET consensus shreds and the read pairs in the 
454 paired end library using parallel phrap, version 
1.080812 (High Performance Software, LLC). The 
software Consed [22-24] was used in the following 
finishing process. Illumina data was used to correct 
potential base errors and increase consensus 
quality using the software Polisher developed at JGI 
(Alla Lapidus, unpublished). Possible mis-
assemblies were corrected using gapResolution 
(Cliff Han, unpublished), Dupfinisher [25], or 
sequencing cloned bridging PCR fragments with 
subcloning. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR (Jan-
Fang Cheng, unpublished) primer walks. A total of 
64 additional reactions were necessary to close 
gaps and to raise the quality of the finished 
sequence. The total size of the genome is 4,355,268 
bp and the final assembly is based on 117.9 Mb of 
454 draft data which provides an average 26.8× 
coverage of the genome and 4,112.2 Mb of Illumina 
draft data which provides an average 934.6× 
coverage of the genome. 

Table 2. Project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 
MIGS-28 Libraries used Illumina standard library, 454 standard library, 454 paired end library 
MIGS-29 Sequencing platforms Illumina, 454 
MIGS-31.2 Fold coverage 454 26.8×, Illumina 934.6× 
MIGS-30 Assemblers Newbler, Velvet, phrap 
MIGS-32 Gene calling method Prodigal, GenePRIMP 
 Genbank ID CP002839 
 Genbank Date of Release June 9, 2011 
 GOLD ID Gc01807 
 NCBI Project ID 56049 
MIGS-13 Source material identifier DSM 18323 
 Project relevance Phylogenetic diversity, biotechnology 
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Genome annotation 
Genes were identified using Prodigal [26], followed 
by a round of manual curation using GenePRIMP 
[27]. The predicted CDSs were translated and used 
to search the National Center for Biotechnology 
Information (NCBI) nonredundant database, 
UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and 
InterPro databases. The tRNAScan-SE tool [28] was 
used to find tRNA genes, whereas ribosomal RNAs 
were found by using BLASTn against the ribosomal 
RNA databases. The RNA components of the 
protein secretion complex and the RNase P were 
identified by searching the genome for the 
corresponding Rfam profiles using INFERNAL [29]. 
Additional gene prediction analysis and manual 
functional annotation was performed within the 
Integrated Microbial Genomes (IMG) platform [30] 
developed by the JGI [31]. 

Genome properties 
The genome includes one circular chromosome 
and three plasmids, for a total size of 4,355,268 bp 
(Table 3, Table 4). A map of the chromosome is 
shown in Figure 3 and maps of the plasmids are 
shown in Figures 4, 5, and 6. A total of 4,370 genes 
were predicted, 4,310 of which are protein-coding 
genes and 60 of which are RNA genes. There are 
three ribosomal RNA operons with one additional 
copy of 5S rRNA. Putative functions were assigned 
to 2,560 protein coding genes, with the remaining 
genes annotated as hypothetical proteins. There 
are 89 pseudogenes, accounting for 2.06% of 
protein-coding genes. Table 5 shows the 
distribution of genes in COG categories. 

 

Table 3. Summary of genome: one chromosome and three plasmids 

Label Size (bp) Topology INSDC identifier RefSeq ID 

Chromosome 3,668,009 circular CP002839.1 NC_015666.1 

Plasmid pHALXA01 436,718 circular CP002840.1 NC_015658.1 

Plasmid pHALXA02 181,778 circular CP002841.1 NC_015667.1 

Plasmid pHALXA03 68,763 circular CP002842.1 NC_015659.1 

Table 4. Nucleotide content and gene count levels of the genome 
Attribute Value % of totala 
Genome size (bp) 4,355,268 100.0% 
DNA Coding region (bp) 3,724,648 85.5% 
DNA G+C content (bp) 2,838,921 65.2% 
Total genes 4,370  
RNA genes 60  
rRNA operons 3  
Protein-coding genes 4,310 100.0% 
Pseudogenes 89 2.1% 
Genes with function prediction 2,560 58.6% 
Genes in paralog clusters 469 10.9% 
Genes assigned to COGs 2,877 66.8% 
Genes assigned Pfam domains 2,735 63.5% 
Genes with signal peptides 529 12.3% 
Genes with transmembrane helices 1,023 23.7% 
CRISPR repeats 0  

a) The total is based on either the size of the genome in base pairs or 
the total number of protein coding genes in the annotated genome. 
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Figure 3. Graphical circular map of the chromosome. From outside to center: Genes on forward strand 
(colored by COG categories), genes on reverse strand (colored by COG categories), RNA genes (tRNAs 
green, rRNAs red, other RNAs black), GC content, and GC skew. 

Genome analysis 
H. xanaduensis grows on only a few of the 
carbohydrates that were tested (glucose, galactose, 
and xylose) [1], but surprisingly it has 40 glycosyl 
hydrolases and 5 polysaccharide lyases [32]. It also 
has quite a large number of ABC transporters for 
carbohydrates: 10 full transporters and one 
additional substrate-binding protein. Among the 
sequenced haloarchaea, only Haloferax volcanii has a 
greater number of carbohydrate ABC transporters 
[33]. Taken together, these findings suggest that H. 
xanaduensis is capable of growth on other sugars 
that have not been tested. 

While many of the glycosyl hydrolases have no 
characterized close homologs, for some of them, 
functions can be predicted. Halxa_0484 has 73% 
similarity to beta-galactosidase of Haloferax 
lucentense [34], while Halxa_3778 has 75% 
similarity to a xylanase from Streptomyces sp. S27 
[35]. Two of the polysaccharide lyases from family 
PL11 have greater than 65% similarity to 
rhamnogalacturonan lyases YesW and YesX from 
Bacillus subtilis [36], suggesting that H. xanaduensis 
may be capable of pectin degradation. 
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Figure 4.  Graphical circular map of plasmid pHALXA01.  From outside to center:  Genes on forward strand 
(colored by COG categories), genes on reverse strand (colored by COG categories), GC content, and GC 
skew. 

 
Degradation pathways for the three sugars that H. 
xanaduensis is known to utilize can be identified in 
the genome. Glucose is likely degraded by the 
semiphosphorylated Entner-Doudoroff pathway 
as in other haloarchaea [37]. Three enzymes of the 
pathway, glucose dehydrogenase, gluconate 
dehydratase, and 2-keto-3-deoxyphospho-
gluconate aldolase, are found in an operon 
(Halxa_4119-4121). The 2-keto-3-deoxygluconate 
kinase is found elsewhere in the genome 
(Halxa_2064). Galactose is probably metabolized 
via the De Ley-Doudoroff pathway as a galactonate 

dehydratase is present (Halxa_3608). Adjacent to 
this gene are a possible alpha-galactosidase 
(Halxa_3609) and a kinase and aldolase that may 
take part in this pathway (Halxa_3607, 
Halxa_3606). Xylose utilization appears to be via 
the pathway found in H. volcanii [38] which 
results in formation of 2-oxoglutarate. Again three 
enzymes of the pathway form an operon – 
xylonate dehydratase, 2-keto-3-deoxyxylonate 
dehydratase, and 2,5-dioxopentanoate dehydro-
genase (Halxa_3763-3765). 
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Figure 5.  Graphical circular map of plasmid pHALXA02. From outside to center:  Genes on forward 
strand (colored by COG categories), genes on reverse strand (colored by COG categories), GC content, 
and GC skew. 

 
Despite the fact that it was isolated from lake 
sediment, H. xanaduensis has an operon of gas 
vesicle proteins (Halxa_0820-0830). It is lacking 
GvpC, GvpD, GvpE, and GvpH, but mutation studies 
have shown that these four proteins are not 
required for gas vesicle formation [39], so H. 
xanaduensis can probably form functional gas 
vesicles. This suggests that H. xanaduensis may 
spend part of its life close to the surface of the lake. 
H. xanaduensis has several genes involved in 
polysaccharide synthesis and transport that are not 
found in any other sequenced haloarchaea. It has 
two genes (Halxa_0209, Halxa_2361) belonging to the 
Capsular Polysaccharide Exporter family (TC 9.A.41). 

This is unusual as one of the members of this family 
is thought to transport polysaccharide across the 
outer membrane of Gram-negative bacteria [40]. 
Adjacent to these two exporter genes are two genes 
(Halxa_0208, Halxa_2362) belonging to COG1861, 
cytidylyl transferases involved in polysaccharide 
biosynthesis. H. xanaduensis also has one gene 
(Halxa_2364) related to PseG, a UDP-sugar 
hydrolase involved in polysaccharide production 
[41]. The presence of these genes in H. xanaduensis 
suggests that it may be capable of extracellular 
polysaccharide synthesis using a process unlike 
any found in other haloarchaea. 
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Table 5. Number of genes associated with the 25 general COG functional categories 
Code Value %agea Description 
J 172 4.0% Translation 
A 1 0.0% RNA processing and modification 
K 184 4.3% Transcription 
L 134 3.1% Replication, recombination and repair 
B 4 0.1% Chromatin structure and dynamics 
D 30 0.7% Cell cycle control, mitosis and meiosis 
Y 0 0.0% Nuclear structure 
V 47 1.1% Defense mechanisms 
T 153 3.5% Signal transduction mechanisms 
M 120 2.8% Cell wall/membrane biogenesis 
N 46 1.1% Cell motility 
Z 0 0.0% Cytoskeleton 
W 0 0.0% Extracellular structures 
U 31 0.7% Intracellular trafficking and secretion 
O 137 3.2% Posttranslational modification, protein turnover, chaperones 
C 194 4.5% Energy production and conversion 
G 194 4.5% Carbohydrate transport and metabolism 
E 259 6.0% Amino acid transport and metabolism 
F 79 1.8% Nucleotide transport and metabolism 
H 158 3.7% Coenzyme transport and metabolism 
I 80 1.9% Lipid transport and metabolism 
P 227 5.3% Inorganic ion transport and metabolism 
Q 44 1.0% Secondary metabolites biosynthesis, transport and catabolism 
R 554 12.9% General function prediction only 
S 314 7.3% Function unknown 
- 1433 33.2% Not in COGs 

a) The total is based on the total number of protein coding genes in the annotated genome. 

 

Figure 6.  Graphical circular map of plasmid pHALXA03.  
From outside to center:  Genes on forward strand 
(colored by COG categories), genes on reverse strand 
(colored by COG categories), GC content, and GC skew. 
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