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Variability in the extent of the descriptions of data (‘metadata’) held in public repositories forces users to 
assess the quality of records individually, which rapidly becomes impractical. The scoring of records on 
the richness of their description provides a simple, objective proxy measure for quality that enables fil-
tering that supports downstream analysis. Pivotally, such descriptions should spur on improvements. 
Here, we introduce such a measure - the ‘Metadata Coverage Index’ (MCI): the percentage of available 
fields actually filled in a record or description. MCI scores can be calculated across a database, for in-
dividual records or for their component parts (e.g., fields of interest). There are many potential uses for 
this simple metric: for example; to filter, rank or search for records; to assess the metadata availability of 
an ad hoc collection; to determine the frequency with which fields in a particular record type are filled, 
especially with respect to standards compliance; to assess the utility of specific tools and resources, and 
of data capture practice more generally; to prioritize records for further curation; to serve as perfor-
mance metrics of funded projects; or to quantify the value added by curation. Here we demonstrate the 
utility of MCI scores using metadata from the Genomes Online Database (GOLD), including records 
compliant with the ‘Minimum Information about a Genome Sequence’ (MIGS) standard developed by 
the Genomic Standards Consortium. We discuss challenges and address the further application of MCI 
scores; to show improvements in annotation quality over time, to inform the work of standards bodies 
and repository providers on the usability and popularity of their products, and to assess and credit the 
work of curators. Such an index provides a step towards putting metadata capture practices and in the 
future, standards compliance, into a quantitative and objective framework. 

Introduction 

“If you cannot measure it, you cannot improve it.” 
Lord Kelvin
 

As the size, number and complexity of bioscience 
data sets in the public domain continue to grow, 
appropriate contextualizing of information be-
comes indispensable. Such ‘halos’ of information 
are referred to as metadata and include infor-
mation on how data were collected, processed and 
analyzed, the nature and state of the biological 
sample used and the research context. Nowhere is 
this more relevant than in high-throughput studies 

using new technologies [1], where the rate of pro-
duction of data sets is becoming almost unmanage-
able given current public provision. We are now at 
a critical stage in which we need to quantify the 
value of such contextual information. 
Metadata considered critical to data interpretation 
are often referred to as ‘minimum information’ 
(MI) and this concept has been expressed in vari-
ous ‘MI checklists’ [2] covering a range of data 
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types including transcriptomics, proteomics, 
metabolomics and genomics. MI checklists specify 
the contextual information that should be reported 
to ensure that studies are (in principle) reproduci-
ble and can be compared or combined in an appro-
priately-informed manner in downstream analyses. 
Because of the increasing number of such specifica-
tions, it behooves the data-sharing community to 
develop methods to quantify the degree of compli-
ance of databases, individual records or ad hoc col-
lections, in order to highlight challenging-to-
acquire components of specifications or to quantify 
improvements in metadata reporting or database 
content (for example, through curation). 
Here we introduce the first, simple metric for eval-
uating the ‘richness’ of the metadata for any given 
database (or compliance with a given standard) 
and a straightforward method to calculate it. The 
‘Metadata Coverage Index’ (MCI) is the number of 
fields in a record for which information is provided, 
as a percentage of the total fields available. An MCI 
is no guarantee of quality, but given that automated 
assessment of the semantic content of metadata 
remains challenging, and that even the correct use 
of controlled vocabulary terms cannot be a general 
solution as things stand, we are prepared to make 
the assumption that most annotation constitutes an 
addition of value to the overall data set and that 
therefore an MCI is a realizable proxy for the hypo-
thetical Metadata Quality Index of a dataset. 
An MCI score represents arbitrarily complex con-
textual information as a simple numerical value. 
MCI scores can be calculated for individual fields or 
across collections/databases. While it is clear that 
some types of metadata carry more value than oth-
ers, we have made no attempt to model distribu-
tions of value across database schemata or MI spec-
ifications so that generality for this simplest ex-
pression of the metric would be preserved. The 
weighting of fields according to local or consensus 
value could be the focus of future work to generate 
derived versions of MCI reflecting those weightings 
(i.e., depend on extended validation rules). 
To illustrate the calculation of this metric and the 
usefulness of the concept, we use the MCI to profile 
the Genomes Online Database (GOLD) [3] and eval-
uate attempted compliance (i.e., fields filled) with 
the ‘Minimum Information about a Genome Se-
quence’ (MIGS) checklist [4] — a part of the MIxS 

standard [5] from the Genomic Standards Consor-
tium (GSC) [6]. 

Materials and Methods 
Data sets 
Spreadsheets containing information for genomes 
from the Genomic Encyclopedia of Bacteria and 
Archaea (GEBA, [7]) and the Human Microbiome 
Project (HMP) [8] studies, as well as all the ge-
nome projects available from GOLD [3] were ob-
tained from the GOLD database. 

Calculation of MCI scores with the MCI Calculator 
MCI scores were calculated for each of the above 
collections as the total number of filled fields ex-
pressed as a percentage of the total fields available 
across all records. Scores were also calculated for 
individual records and for each field (i.e., each varia-
ble or column header in a spreadsheet). Note that 
MCI scores are expressed as percentages, and are 
therefore size-independent. While the scores could 
have been calculated using a spreadsheet, the MCI 
Calculator tool was built to automate the process 
(Figure 1). As input, it takes any spreadsheet in tabu-
lar format. As output, MCI scores are calculated for 
the whole collection and new spreadsheets are gen-
erated containing per-record and per-field scores. 
The MCI Calculator can be downloaded from the Ge-
nomes On Line Database MCI Calculator [9]. 

For users: addition of MCI scores to the 
GOLD database 
MCI scores were calculated for all records in 
GOLD, added to the GOLDCARD pages and offered 
for use through the GOLD search interface. Thus, 
MCI scores can now be used to search and sort 
GOLD records; for example, to retrieve only those 
records scoring above a certain MCI threshold. 

Results 
Calculating MCI scores and comparison of 
metadata fields 
The GOLD database contains more than two hun-
dred metadata fields across more than thirteen 
thousand records; well over 2.6 million data points 
[3]. For the purpose of this study, 113 metadata 
fields were selected – those applicable to most 
types of projects – and MCI scores were calculated 
for them across all genome records in the database 
(Table 1). 
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Figure 1. Schematic representation of the MCI calculation procedure. 

 
There are five fields with an MCI score of 100 (fields 
1-5 in Table 1). These are the fields filled for all the 
genome projects in GOLD: essential fields for project 
registration in the GOLD database. There are seven 
more fields that have an MCI score greater than 99 
(fields 6-13): again, essential fields for project regis-
tration – most likely the data are missing due to an 
error and should be flagged for attention. Some of 
the fields listed appear to be redundant (e.g. field 6 
against 14, or 10 against 13), but when the number 
of records associated with them is displayed, they 
make better sense. For example, GOLD has imple-
mented a field named ‘GOLD Genus’ (field 6), in addi-
tion to the genus information provided from the 
NCBI Taxonomy (field 14). This is because genus 
information is more readily available at the time of 
project registration with GOLD than it usually 
through the NCBI taxonomy; also true for phyla. The 
MCI score for the field ‘NCBI BioProject ID’ is 75%, 
which implies that 25% of the projects in GOLD are 
not registered yet with the NCBI BioProject collec-
tion. Forty-two percent of projects have ‘Host Name’ 
information, reflecting the size of the genome pro-
jects associated with a specific host organism. 74% 
of the projects in GOLD have an ‘update’ date (field 

24 on Table 1), suggesting that the majority of the 
projects have been revisited for curation at least 
once after they were created in the database. 

Overall, approximately two thirds of the 113 select-
ed GOLD fields have an MCI score below 50 (fields 
33-113). The MCI score across all 113 fields is 34.6. 
Ten of those fields apply only to projects that are 
part of the HMP study, and were excluded from sub-
sequent comparisons across different datasets. 
Twelve fields are part of the MIGS fields as recom-
mended by the GSC [4] (highlighted fields on Table 
1). The position of the MIGS fields in the overall list 
of the 113 fields from GOLD makes clear that these 
are not the most frequently filled metadata fields 
across all projects. Only two of the MIGS fields are 
among the top ten GOLD fields and only six make the 
top fifty. While the MIGS fields were never likely to 
be the most populated fields (for example, data for 
‘Isolation site’ and ‘Latitude/Longitude’ are fre-
quently not available, even though they are among 
the most important metadata fields), nonetheless 
their overall position in the list suggests that a revi-
sion may be necessary. 
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Table 1. The list of all selected metadata fields in GOLD (columns 2 and 6)1 
 GOLD Metadata Field Records MCI %  GOLD Metadata Field Records MCI % 

1 GOLD STAMP ID 13,786 100 58 HMP FINISHING GOAL2 2,472 17.93 
2 DISPLAY NAME 13,786 100 59 ENERGY SOURCES 2,467 17.89 
3 NCBI TAXON ID 13,786 100 60 ASSEMBLY METHOD 2,235 16.21 
4 DOMAIN 13,786 100 61 HMP ISOLATION BODY SITE2 2,169 15.73 
5 AVAILABILITY 13,786 100 62 GREENGENES ID 2,146 15.57 
6 GOLD GENUS 13,785 99.99 63 PROJECT DESCRIPTION 2,122 15.39 
7 PROJECT TYPE 13,784 99.99 64 PUBLICATION LINK 2,062 14.96 
8 PROJECT STATUS 13,784 99.99 65 HMP NCBI SUBMISSION STATUS2 1,948 14.13 
9 NCBI SUPERKINGDOM 13,782 99.97 66 HMP PROJECT STATUS2 1,948 14.13 
10 GOLD PHYLUM 13,778 99.94 67 HMP ID2 1,946 14.12 
11 PROPOSAL NAME 13,761 99.82 68 ISOLATION SOURCE 1,884 13.67 
12 GOLD SPECIES 13,734 99.62 69 SEQUENCING STATUS LINK 1,849 13.41 
13 NCBI PHYLUM 13,526 98.11 70 GENE CALLING METHOD 1,811 13.14 
14 NCBI GENUS 13,506 97.97 71 LONGITUDE 1,631 11.83 
15 NCBI ORDER 13,435 97.45 72 LATITUDE 1,629 11.82 
16 NCBI SPECIES 13,359 96.90 73 HMP ISOLATE SOURCE2 1,482 10.75 
17 NCBI FAMILY 13,135 95.28 74 BEI STATUS2 1,355 9.83 
18 NCBI CLASS 13,063 94.76 75 BODY SAMPLE SUBSITES 1,236 8.97 
19 SEQUENCING STATUS 12,498 90.66 76 16S ID 1,195 8.67 
20 STRAIN 12,480 90.53 77 BIOSAFETY LEVEL 1,154 8.37 
21 SEQUENCING COUNTRY 12,326 89.41 78 ISOLATION DATE 1,080 7.83 
22 SEQUENCING CENTER 11,837 85.86 79 HMP ISOLATION COMMENTS2 1,052 7.63 
23 NCBI PROJECT ID 10,358 75.13 80 NUMBER OF READS 1,048 7.60 
24 UPDATE DATE 10,247 74.33 81 ORGANISM COMMENTS 948 6.88 
25 RELEVANCE 9,993 72.49 82 METABOLISM 947 6.87 
26 CONTACT NAME 8,413 61.03 83 ISOLATION COMMENTS 874 6.34 
27 HABITATS 7,979 57.88 84 LIBRARY METHOD 778 5.64 
28 TEMPERATURE RANGE 7,673 55.66 85 SEROVAR 774 5.61 
29 GRAM STAIN 7,341 53.25 86 BODY PRODUCTS 723 5.24 
30 BIOTIC RELATIONSHIP 7,147 51.84 87 HOST HEALTH 712 5.16 
31 CONTACT EMAIL 7,037 51.04 88 STRAIN INFO ID 691 5.01 
32 OXYGEN REQUIREMENT 7,028 50.98 89 HMP ISOLATION COMMENTS2 690 5.01 
33 CELL SHAPE 6,748 48.95 90 HMP ISOLATION BODY SUBSITE2 681 4.94 
34 DISEASES 6,661 48.32 91 SYMBIOTIC RELATIONSHIP 493 3.58 
35 MOTILITY 6,275 45.52 92 SHORT READ ARCHIVE ID 475 3.45 
36 HOST NAME 5,807 42.12 93 INFORMATION URL 465 3.37 
37 SEQUENCING METHODS 5,636 40.88 94 PH 441 3.20 
38 ISOLATION SITE 5,388 39.08 95 IMAGE URL 415 3.01 
39 SPORULATION 5,187 37.63 96 VECTOR 380 2.76 
40 HOST TAXON ID 5,131 37.22 97 SYMBIONT 348 2.52 
41 GENOME SIZE 4,706 34.14 98 SYMBIOTIC INTERACTION 344 2.50 
42 COMPLETION DATE 4,585 33.26 99 ISOLATION PUBMED ID 339 2.46 
43 CULTURE COLLECTION 4,212 30.55 100 HOST GENDER 323 2.34 
44 CELL ARRANGEMENTS 4,126 29.93 101 DEPTH 308 2.23 
45 PHENOTYPES 4,045 29.34 102 SALINITY 281 2.04 
46 GC PERC 3,693 26.79 103 HOST AGE 250 1.81 
47 GENE COUNT 3,556 25.79 104 ISOLATION METHOD 238 1.73 
48 IN IMG DATABASE 3,453 25.05 105 CELL DIAMETER 233 1.69 
49 PUBLICATION JOURNAL 3,395 24.63 106 CELL LENGTH 189 1.37 
50 SEQUENCING QUALITY 3,286 23.84 107 COLOR 157 1.14 
51 GEO LOCATION 3,265 23.68 108 ALTITUDE 94 0.68 
52 TYPE STRAIN 3,248 23.56 109 HOST RACE 72 0.52 
53 COVERAGE 3,246 23.55 110 HOST COMMENTS 50 0.36 
54 BODY SAMPLE SITES 3,225 23.39 111 PROJECT COMMENTS 38 0.28 
55 ISOLATION COUNTRY 3,140 22.78 112 SYMBIONT TAXON ID 36 0.26 
56 TEMPERATURE OPTIMUM 2,712 19.67 113 NCBI ARCHIVE ID 10 0.07 
57 CONTIG COUNT 2,472 17.93      

1with the number of records for each of them (columns 3 and 7), and the MCI % (columns 4 and 8), ordered by the field with highest MCI. 
Rows in gray belong to the MIGS minimum information checklist that extends what is captured by the INSDC [4] (i.e. full taxonomy is not 
captured since a reference to a valid NCBI taxid is expected). 
2 fields relevant only to projects that are part of the HMP study 
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MCI score comparison of data sets 
One advantage of calculating MCI scores as a per-
centage is that they are size-independent and 
therefore allow direct comparison across collec-
tions. An MCI score captures the proportion of total 
possible fields that are filled in (have values) but do 
not enable a value judgment on the absolute num-
ber of values present in a particular collection. For 
comparison, Table 2 shows the MCI scores, along 
with the total number of records and fields, the 
maximum number of fields for each collection and 
the total number of filled values per collection. 
We have created nine distinct project collections 
from GOLD (Project list column on Table 2) and 
organized them in three separate groups, enabling 
comparison of the richness of various slices of the 
full database. Each comparison is meaningful only 
within its own group. For example, the ‘GEBA’ col-
lection comprises 256 genome projects, all part of 
the GEBA study. The collection ‘Complete’ refers to 

the 2,040 complete genome projects available in 
GOLD; ‘HMP’ refers to the 2,096 projects selected 
for sequencing under the HMP study. The collection 
‘All projects’ encompasses the currently available 
13,790 isolate genome projects in GOLD, while 
‘Archaea’, ‘Bacteria’ and ‘Eukarya’ relate to the cor-
responding phylogenetic subgroups. Each project 
collection group is characterized by the specific 
number and type of fields selected for the compari-
son. This is essential in order to select fields that 
would be applicable for all the projects within a list. 
Accordingly, all the HMP related fields were ex-
cluded from the total number of fields used in this 
study, thus creating a set of 103 fields that apply to 
all project lists (CORE group). In a similar manner, 
the ten HMP-specific fields have been grouped to 
compose the HMP group, while the 12 MIGS fields 
comprise the MIGS group of fields (all shown on the 
column Field group on Table 2). 

 

Table 2. Comparison of MCI scores from the GOLD database.1 

 Project List Field group Fields per Record Records Total Fields Filled Fields MCI % 

A. 1. GEBA CORE 103 256 26,368 14,287 54.18 
 2. Complete   2,040 211,253 109,532 52.00 
 3. HMP   2,096 215,888 87,007 39.91 
 4. All Projects   13,790 1,420,370 522,850 37.00 

B. 1. Archaea CORE 103 340 35,020 16,767 48.00 
 2. Bacteria   11,233 1,156,999 443,474 38.00 
 3. Eukarya   2,217 228,351 62,609 27.00 

C. 1. GEBA MIGS 12 256 3,072 2,102 68.43 
 2. Complete   2,040 24,612 14,667 59.59 
 3. HMP   2,096 25,152 9,642 38.34 
 4. All Projects   13,790 165,480 62,564 37.81 

D. 1. HMP HMP 10 2,096 20,960 14,673 70.00 

E. 1. All-2008 2008 33 2,905 95,865 59,097 61.65 

 2. All-2010   5,843 192,819 119,881 62.17 

 3. All-2012   13,790 455,070 273,805 60.17 
1 Note that if all variables in a database or collection apply to all records, then ‘total fields’ is equal to records 
multiplied by fields. If some variables are specific to a subset of records then the total number of possible 
fields will be smaller. 
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Comparing the GEBA collection against the complete 
genomes, the HMP and the all-projects lists, using 
the core 103 metadata fields (group A on Table 2), 
reveals that GEBA has the best-curated project 
metadata, having the highest MCI score (54.18%). 
This reflects the emphasis given to the collection and 
curation of metadata for this project, suggesting a 
formal role for MCI as a performance metric. The 
availability of SIGS compliant genome reports for all 
the completed GEBA genomes, certainly had a pivot-
al role in providing a well curated and standardized 
source of key metadata for those projects [10]. In 
terms of metadata coverage across different phylo-
genetic groups within the GOLD dataset (group 2, on 
Table 2), archaeal and bacterial subsets of the data 
had higher MCI scores than eukaryotes, reflecting 
the value of more-detailed curation of the microbial 
genome projects for GOLD. Likewise, subsets of data 
compliant with the MIGS standard fields also had 
relatively higher general MCI scores, with the GEBA 
list reaching 68% of metadata coverage (group C on 
Table 2), almost 10% more than the average com-
plete genome. Finally, within the HMP project list the 
HMP fields have a high 70% MCI score (group D on 
Table 2). 

Improvements in MCI scores over time 
MCI scores can be used to compare collections and 
to quantify incremental increases in the richness 
of metadata over time. To illustrate this we com-
pared the information contained in the GOLD da-
tabase in 2008 [11], 2010 [12] and in 2012. The 
2008 publication of GOLD reported a list of 45 
metadata fields and the number of projects asso-
ciated with those fields [11], while the 2010 publi-
cation of GOLD reported 105 variables and the 
number of projects for which information was 
available [12]. We selected a common set of 33 
fields across the three sets and calculated the MCI 
scores for those (group E on Table 2). The results 
of this comparison revealed that the overall MCI 
score has remained stable around 60%, although 
the total number of records has been doubling 
every two years. This raises the question of 
whether more recent submitters have tended to 
report more metadata, which would be indicative 
of increased acceptance of the value of appropri-
ate metadata. However, since the majority of the 
data available from the GOLD database are not 
provided from the submitters but rather collected 
and curated in the database, it is hard to accurate-
ly address that question with these data. 

Calculating MCI Scores for Records and Fields 
MCI scores can be calculated for individual records 
or fields (variables) in a given dataset. This allows 
variation in MCI scores to be used to compare, sort 
and search records within datasets, or to select 
subsets. To show the utility of calculating MCI 
scores per record, MCI scores were included in the 
GOLD database. Using the advanced search option, 
users can now select records based on MCI score. 
For example, Figure 2 shows all entries with MCI 
scores > 50 on a world map, using associated 
metadata on the country of origin. The first ten pro-
jects in GOLD ranked by MCI score are shown in 
Table 3. Interestingly, six are part of the HMP study, 
while the remaining four projects are part of the 
Root Nodulating Bacteria (RNB) study running at 
the DOE Joint Genome Institute [13]. These findings 
reveal that although the entire list of 2,096 HMP 
projects has a relatively low MCI score (39.91%), 
some of the best-curated projects belong to this 
group. This is expected, given that the MCI score of 
an entire dataset is the average score of all the rec-
ords comprising that dataset. If some of the records 
are poorly curated, then the overall MCI score of 
that dataset will be lower. The HMP dataset, which 
is comprised of 2,096 records, is an excellent set to 
demonstrate this issue. This group may have some 
of the best curated records, as shown on Table 3, 
but, it includes a large number of records (about 
20% of the total) that represent targeted projects, 
for which very limited metadata is available. 

Discussion 
We have described a new metric characterizing the 
richness of metadata in a given database, record or 
other collection. High MCI scores identify the most 
commonly-filled fields in existing records and could 
be used to automatically select the most useful 
fields for display in tables or web interfaces (i.e., the 
richest or most commonly-complete subsets of the 
data), or to empirically validate the content of a 
‘minimum information’ specification [2]. The fields 
most frequently filled in a given collection are good 
candidates to be formalized by a community as a 
‘core’ requirement. If there is a mismatch – for ex-
ample, if fields marked as ‘core’ in a standard are 
difficult to collect, or those with 100% compliance 
are not included – it suggests that standard might 
need to be revised; for example, with respect to the 
GSC definition of new habitat-specific metadata 
fields (‘environmental packages’) [5]. 
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Figure 2. MCI scores are implemented in the GOLD database. MCI scores can be seen on the GOLDCARDS for each 
entry and are including in the advanced search option. For example, all entries with an MCI score > 50 are shown 
on the map below. 

Table 3. The list of the genome projects in GOLD with the top 10 MCI scores 
GOLD ID Organism Name Study Group MCI % 

Gi05215 Streptococcus bovis ATCC 700338 HMP 66.95 

Gi02825 Mycobacterium parascrofulaceum ATCC BAA-614 HMP 66.10 

Gc00590 Ensifer medicae WSM419 RNB 65.25 

Gc00870 Rhizobium leguminosarum bv. trifolii WSM2304 RNB 65.25 

Gi02071 Anaerofustis stercorihominis DSM 17244 HMP 64.41 

Gi02072 Anaerotruncus colihominis DSM 17241 HMP 64.41 

Gi02680 Clostridium hiranonis TO-931, DSM 13275 HMP 64.41 

Gi01716 Clostridium scindens ATCC 35704 HMP 64.41 

Gc01039 Rhizobium leguminosarum bv. trifolii WSM1325 RNB 64.41 

Gi02147 Bacteroides stercoris ATCC 43183 RNB 63.56 

Accordingly, the above discussion points out that an MCI score is useful when applied to large da-
tasets: it can provide the average score across all the records as well as the distribution of the scores 
across the records. To demonstrate this, we plot the distribution of the MCI scores across the HMP 
and GEBA datasets, for each of their corresponding records. As shown on Figure 3, this distribution 
reveals that the HMP dataset has indeed a larger number of records that currently are characterized 
with lower MCI score, compared to the GEBA dataset. 
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Figure 3. Distribution of the MCI percentages for the GEBA and HMP groups. 

MCI scores, as defined here, only take into account 
simple presence or absence of values. It is clearly 
important to make sure these values are valid (for 
example not uninformative ‘placeholders’ entered 
into required fields by reluctant data submitters 
or otherwise inappropriate information). Like-
wise, sheer quantity of metadata is not always 
necessarily optimal and care needs to be taken in 
both generating and interpreting MCI scores in a 
manner that is appropriate to the interpretation of 
the data at hand. MCI scores are best used when 
the exact variables in the total list of expected 
fields are well defined and transparent to the user 
(i.e. ideally selected from a minimum standard). 
MCI scores will ideally be used to make targeted 
improvements to databases over time. They could 
also be used over time to track the evolution of 
databases and their contents, for example, to sig-
nal significant updates in content even when the 
total number of entries remains the same, to re-
port progress to funders, or to reward the work of 
curators who contribute the relevant information. 
Methods that aid in defining the pivotal contribu-
tions of curators and rewarding their efforts to the 
wider community are needed. 
MCI scores could be further refined in several 
ways; for example, to include only fields matching 
certain criteria (e.g., string, number, regular ex-
pression-compliant, or curated versus calculated 
values), or those using terms from recognized on-
tologies. This would be particularly useful for 

judging compliance with a given standard like 
MIGS – since free text is not allowed, formal vali-
dation could be done using, for example, GCDML 
[14] (for genomics) or the ISA-Tab (multi-omic) 
format [15]. MCI scores could also be broken 
down to cover ‘required’ and ‘optional’ fields sep-
arately. 
Further refinement of MCI scores would require 
more thorough validation of metadata, making 
maximum use of mappings between minimal in-
formation requirements, recommended terminol-
ogies and any formats used. New efforts emerging 
from the community are laying the basis for such a 
multi-dimensional validation process: Data stand-
ardization efforts such as the ISA Commons [16] 
offer common metadata tracking frameworks that 
can better underpin and facilitate the develop-
ment of improved validation methods. 
Where databases such as PRIDE [17] allow free 
use of controlled vocabularies to extend records 
(i.e., user-defined fields), the list of identifiable 
fields may appear disproportionately large (each 
term used becomes a field, making for a very 
sparse matrix). MCI requires adaptation for use in 
such data structures, but even in basic form can be 
useful in defining whether one or more core (min-
imum) sets of metadata can be identified (subsets 
of the data with MCI scores well above average). 
When calculating MCI scores, it is important to 
consider that databases may also contain marked-
ly different subsets (for example, delineated by 
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technique or taxon); appropriate partitioning of 
records before calculation would address this. 
In summary, the MCI scores individual records 
according to the completeness of their metadata 
and of their component fields, providing valuable 
insights into the provenance, value and cost of 
those records. As such, it serves as an objective 

and quantifiable metric for metadata capture and 
highlights the scholarly work required to develop 
curated collections [18]. We look forward to the 
time when other databases utilize MCI scores, as it 
will also serve to provide a qualitative assessment 
between these resources. 
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