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Labrenzia alexandrii Biebl et al. 2007 is a marine member of the family Rhodobacteraceae in 
the order Rhodobacterales, which has thus far only partially been characterized at the ge-
nome level. The bacterium is of interest because it lives in close association with the toxic 
dinoflagellate Alexandrium lusitanicum. Ultrastructural analysis reveals R-bodies within the 
bacterial cells, which are primarily known from obligate endosymbionts that trigger “killing 
traits” in ciliates (Paramecium spp.). Genomic traits of L. alexandrii DFL-11T are in accord-
ance with these findings, as they include the reb genes putatively involved in R-body synthe-
sis. Analysis of the two extrachromosomal elements suggests a role in heavy-metal resistance 
and exopolysaccharide formation, respectively. The 5,461,856 bp long genome with its 
5,071 protein-coding and 73 RNA genes consists of one chromosome and two plasmids, and 
has been sequenced in the context of the Marine Microbial Initiative. 

Introduction 
Strain DFL-11T (= DSM 17067 = NCIMB 14079) is 
the type strain of Labrenzia alexandrii, a marine 
member of the Rhodobacteraceae (Rhodo-
bacterales, Alphaproteobacteria) [1]. Strain DFL-
11T was isolated from single cells of a culture of 
the toxic dinoflagellate Alexandrium lusitanicum 
maintained at the Biological Research Institute of 
Helgoland, Germany [1]. L. alexandrii is the type 
species of the genus Labrenzia, which currently 
also harbors a couple of species (L. aggregata, L. 
alba and L. marina) that were previously classified 
in the genus Stappia [1]. Biebl et al. 2007 [1] did 
not provide a formal assignment of the genus 
Labrenzia to a family, but their phylogenetic anal-
ysis placed Labrenzia with high support within a 
clade also comprising Nesiotobacter, Pannoni-
bacter, Pseudovibrio, Roseibium and Stappia, gene-
ra which at that time were either not formally as-
signed to a family or to Rhodobacteraceae [2]. 
Other analyses [3] indicate that the entire clade 
should not be placed within Rhodobacteraceae, 
but an alternative taxonomic arrangement has, to 

the best of our knowledge, not yet been published. 
Here we present a summary classification and a 
set of features for L. alexandrii DFL-11T including 
so far undiscovered aspects of its ultrastructure 
and physiology, together with the description of 
the high-quality permanent draft genome se-
quence and annotation. 

This work is part of the Marine Microbial Initiative 
(MMI) which enabled the J. Craig Venter Institute 
(JCVI) to sequence the genomes of approximately 
165 marine microbes with funding from the Gor-
don and Betty Moore Foundation. These microbes 
were contributed by collaborators worldwide, and 
represent an array of physiological diversity, in-
cluding carbon fixation, photoautotrophy, 
photoheterotrophy, nitrification, and methano-
trophy. The MMI was designed to complement 
other ongoing research at JCVI and elsewhere to 
characterize the microbial biodiversity of marine 
and terrestrial environments through meta-
genomic profiling of environmental samples. 
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Classification and features 
16S rRNA analysis 
A representative genomic 16S rRNA sequence of 
strain DFL-11T was compared using NCBI BLAST 
[4,5] using default settings (e.g., considering only 
the high-scoring segment pairs (HSPs) from the 
best 250 hits) with the most recent release of the 
Greengenes database [6] and the relative frequen-
cies of taxa and keywords (reduced to their stem 
[7]) were determined, weighted by BLAST scores. 
The most frequently occurring genera were 
Stappia (36.9%), Pannonibacter (19.6%), 
Pseudovibrio (18.8%), Labrenzia (10.8%) and 
Achromobacter (5.0%) (98 hits in total). Regard-
ing the seven hits to sequences from other mem-
bers of the genus, the average identity within 
HSPs was 97.3%, whereas the average coverage 
by HSPs was 96.4%. Among all other species, the 
one yielding the highest score was Stappia alba 
(AJ889010) (since 2007 reclassified as L. alba [1]), 
which corresponded to an identity of 98.2% and 
an HSP coverage of 99.9%. (Note that the 
Greengenes database uses the INSDC (= 
EMBL/NCBI/DDBJ) annotation, which is not an 
authoritative source for nomenclature or classifi-
cation.) The highest-scoring environmental se-
quence was AY701471 (Greengenes short name 
'dinoflagellate symbiont clone GCDE08 W'), which 
showed an identity of 99.8% and an HSP coverage 
of 99.6%. The most frequently occurring key-
words within the labels of all environmental sam-
ples which yielded hits were 'coral' (5.4%), 
'microbi' (3.2%), 'marin' (3.0%), 'diseas' (2.8%) 
and 'healthi' (2.8%) (150 hits in total). The most 
frequently occurring keywords within the labels 
of those environmental samples which yielded 
hits of a higher score than the highest scoring spe-
cies were 'coral' (11.1%), 'dinoflagel, symbiont' 
(5.7%), 'aquarium, caribbean, chang, dai, disease-
induc, faveolata, kept, montastraea, plagu, white' 
(5.6%) and 'habitat, microbi, provid, threaten' 
(5.5%) (4 hits in total). These terms partially cor-
respond with the known ecology of L. alexandrii. 

Figure 1 shows the phylogenetic neighborhood of 
L. alexandrii in a 16S rRNA based tree. The se-
quences of the three identical 16S rRNA gene cop-
ies in the genome do not differ from the previous-
ly published 16S rRNA sequence (AJ582083). 

Morphology and physiology 
The rod-shaped cells of strain DFL-11T are 0.5 to 
0.7 μm in width and 0.9 to 3.0 μm long with often 
unequal ends (Table 1 and Figure 2A), suggesting 
a polar mode of cell division which is increasingly 
being discovered in Alphaproteobacteria and 
thought to be ancient [23]. Motility is present by 
means of a single subpolar flagellum [1]. Star-
shaped aggregated clusters occur [1]. The colonies 
exhibit a beige to slightly pink color [1]. Strain 
DFL-11T has a chemotrophic lifestyle; no fermen-
tation occurs under aerobic or anaerobic condi-
tions [1]. Optimal growth occurs in the presence of 
1-10% NaCl and pH 7.0-8.5 at 26°C, whereas no 
growth occurs in the absence of NaCl or of biotin 
and thiamine as growth factors [1]. Several organ-
ic acids like acetate, butyrate, malate and citrate as 
well as glucose and fructose are metabolized, but 
methanol, ethanol and glycerol are not used for 
growth [1]. Whereas gelatin is hydrolyzed by the 
cells, starch is not; nitrate is not reduced [1]. The 
strain shows a weak resistance to potassium 
tellurite [1]. 

The utilization of carbon compounds by L. 
alexandrii DSM 17067T was also determined for 
this study using PM01 microplates in an OmniLog 
phenotyping device (BIOLOG Inc., Hayward, CA, 
USA). The microplates were inoculated at 28°C 
with a cell suspension at a cell density of approx-
imately 85% Turbidity and dye D. Further addi-
tives were artificial sea salts, vitamins, trace ele-
ments and NaHC03. The exported measurement 
data were further analyzed with the opm package 
for R [24], using its functionality for statistically 
estimating parameters from the respiration 
curves such as the maximum height, and automat-
ically translating these values into negative, am-
biguous, and positive reactions. The strain was 
studied in six independent biological replicates, 
and reactions with a distinct behavior between 
the repetitions were regarded as ambiguous and 
are not listed below. 

L. alexandrii DSM 17067T was positive for glycerol, 
D-xylose, D-mannitol, L-glutamic acid, D,L-malic 
acid, D-ribose, D-fructose, D-glucose, α-keto-
glutaric acid, α-keto-butyric acid, uridine, L-
glutamine, α-hydroxy-butyric acid, myo-inositol, 
fumaric acid, propionic acid, glycolic acid, inosine, 
tricarballylic acid, L-threonine, D-malic acid, L-
malic acid and pyruvic acid. The strain was nega-
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tive for D-saccharic acid, D-galactose, D-alanine, D-
trehalose, dulcitol, D-serine, L-fucose, D-
glucuronic acid, D-gluconic acid, D,L-α-glycerol-
phosphate, sodium formate, D-glucose-6-
phosphate, D-galactonic acid-γ-lactone, tween 20, 
L-rhamnose, D-maltose, L-asparagine, D-aspartic 
acid, D-glucosaminic acid, 1,2-propanediol, tween 
40, α-methyl-D-galactoside, α-D-lactose, lactulose, 
sucrose, m-tartaric acid, α-D-glucose-1-phosphate, 
D-fructose-6-phosphate, tween 80, α-hydroxy-
glutaric acid-γ-lactone, β-methyl-D-glucoside, 
adonitol, maltotriose, 2'-deoxy-adenosine, adeno-
sine, gly-asp, D-threonine, bromo-succinic acid, 
mucic acid, D-cellobiose, glycyl-L-glutamic acid, L-
alanyl-glycine, acetoacetic acid, N-acetyl-β-D-
mannosamine, methyl pyruvate, tyramine, D-
psicose, glucuronamide, L-galactonic acid-γ-
lactone, D-galacturonic acid and β-
phenylethylamine. 

In an electron microscopic survey colonies of 
strain DFL-11T, grown on half-strength MB (Roth 
CP73.1) agar plates, were fixed with 2.5% 
glutardialdehyde, 10 mM Hepes, pH 7.1, and em-
bedded in Spurr's epoxide resin as described in 
detail elsewhere [25]. Ultrathin sections (90 nm) 
were analyzed in the elastic bright-field mode 
with an energy-filter transmission electron micro-
scope (TEM) (Libra 120 plus; Zeiss, Oberkochen), 
and micrographs were recorded with a 2k × 2k 
cooled CCD-camera (SharpEye; Tröndle, 
Moorenweis, Germany) at a magnification range of 
4000 × to 25000 ×. 

TEM analysis showed that individual cells of strain 
DFL-11T, assembled in clusters, contained 
refractile inclusion bodies, known as R-bodies 
[26,27], when plate-grown bacteria were embed-
ded as microcolonies of different growth states. R-
bodies are highly insoluble protein ribbons coiled 
to form a hollow cylinder within the cytoplasma of 
the bacterial cells [26,27]. In strain DFL-11T these 
unusual structures were generally observed in cell 
remnants, which contained only small amounts of 
cytoplasmic material (Figure 2A). They were built 
mainly as five- to six-layered spirals and often had 
a loose electron-dense, amorphous matrix. In con-
centric cross- or longitudinal sections the individ-
ual layers appeared to be composed of an elec-
tron-dense dark and an electron-translucent 
bright layer; each doublet was found to have an 
average thickness of 10.1 nm (standard deviation: 

0.7 nm; N = 16), ranging from minimal 8.7 nm to 
maximum 11.9 nm. The overall diameter of the R-
bodies ranged from 183 nm to 242 nm, which is in 
good accordance with the dimensions of furled R-
body ribbons reviewed in [27]. 

To date only a few bacterial species are known to 
produce R-bodies [26,27]. They were first de-
scribed in members of the genus 'Caedibacter'. 
These bacteria live as obligate endosymbionts in 
Paramecium species and confer the so-called “kill-
er trait” to their hosts: “killer-phenotype” parame-
cia release 'Caedibacter' cells via their cytopyge 
into the environment and these kill sensitive par-
amecia (i.e. 'Caedibacter'-free ciliates) after being 
ingested. The toxic effect of 'Caedibacter' is strictly 
correlated with R-body synthesis. Once incorpo-
rated into sensitive paramecia, the R-body ex-
trudes in a telescopic fashion, thereby disrupting 
the bacterial cell. Cellular components are subse-
quently released into the cytoplasma of Parame-
cium, finally causing the ciliate’s death. It has been 
proposed that a lethal toxin is involved in this 
process, but it has not been identified so far [28]. 
Interestingly, a phylogenetic study based on com-
parative 16S rRNA gene sequencing revealed that 
'Caedibacter' is a polyphyletic assemblage, com-
prising Gammaproteobacteria related to 
Francisella tularensis as well as Alpha-
proteobacteria affiliated with Rickettsiales (includ-
ing the obligate Paramecium endosymbiont 
'Holospora') [29]. In addition to the obligate 
endosymbionts, some free-living bacteria, i.e. 
Hydrogenophaga taeniospiralis, Acidovorax avenae 
subsp. avenae (both Burkholderiales), 
Rhodospirillum centenum, an anoxygenic photo-
trophic alphaproteobacterium, and Marinomonas 
mediterranea, a marine gammaproteobacterium, 
were observed to produce R-bodies [30]. 

Genome sequencing and annotation 
Genome project history 
The genome was sequenced within the MMI sup-
ported by the Gordon and Betty Moore Founda-
tion. Initial Sequencing was performed by the JCVI 
(Rockville, MD, USA) and a high-quality draft se-
quence was deposited at INSDC. The number of 
scaffolds and contigs was reduced and the assem-
bly improved by a subsequent round of manual 
gap closure at HZI/DSMZ. A summary of the pro-
ject information is shown in Table 2. 
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Chemotaxonomy 
Ubiquinone 10 was found as the single respiratory 
lipoquinone, which is a common feature in most 
Alphaproteobacteria. The spectrum of polar lipids 
consists of phosphatidylglycerol, diphosphatidyl-
glycerol, phosphatidylethanolamine, phos-
phatidylcholin, phosphatidylmonomethyl-
ethanolamine, sulphoquinovosyldiacylglyceride, 
as well as an unidentified aminolipid [1]. In the 
fatty acids spectrum is dominated by C18 : 1ω7 (71%) 
and complemented by C20 : 1ω7 (9.1%), C18 : 0 (6.5%), 
11-methyl C18:1ω6t (3.7%) and some hydroxy fatty 
acids C14:0 3-OH (3.4%) and C16:0 3-OH (1.5%) as well 
as traces of C18 : 1ω9 and cyclo C21:0 [1]. The presence 
of photosynthetic pigments was tested in [1] and 
the absorption spectrum of the acetone/methanol 
extract showed that bacteriochlorophyll a was 

present at low concentrations. Another peak at 
420 and 550 nm indicated the presence of an ad-
ditional photosynthetic pigment, most probably a 
yet unidentified carotinoid. 

Growth conditions and DNA extractions 
A culture of DSM 17067 was grown for two to 
three days on a LB & sea-salt agar plate, contain-
ing (l-1) 10 g tryptone, 5 g yeast extract, 10 g NaCl, 
17 g sea salt (Sigma-Aldrich S9883) and 15 g agar. 
A single colony was used to inoculate LB & sea-salt 
liquid medium and the culture was incubated at 
28°C on a shaking platform. The genomic DNA was 
isolated using the Qiagen Genomic 500 DNA Kit 
(Qiagen 10262) as indicated by the manufacturer. 
DNA quality and quantity were in accordance with 
the instructions of the genome sequencing center. 

 
Figure 1. Phylogenetic tree highlighting the position of L. alexandrii relative to the type strains of the species of se-
lected genera (see [1,3] and the results of the Greengenes database search described above) within the family 
Rhodobacteraceae. These genera form a clade [1,3], but it might be better not to place them in this family [3]. The 
tree was inferred from 1,366 aligned characters [8,9] of the 16S rRNA gene sequence under the maximum likelihood 
(ML) criterion [10] and rooted with Pseudovibrio. The branches are scaled in terms of the expected number of substi-
tutions per site (see size bar). Numbers adjacent to the branches are support values from 1,000 ML bootstrap repli-
cates [11] (left) and from 1,000 maximum-parsimony bootstrap replicates [12] (right) if larger than 60%. Lineages 
with type-strain genome sequencing projects registered in GOLD [13] are labeled with one asterisk. 

http://dx.doi.org/10.1601/nm.809�
http://dx.doi.org/10.1601/nm.10794�
http://dx.doi.org/10.1601/nm.1037�
http://dx.doi.org/10.1601/nm.8799�


Fiebig et al. 

http://standardsingenomics.org 417 

 
Figure 2. Ultrastructure of L. alexandrii DFL-11T and its R-bodies. (A) Survey view of the 
cells from the near-surface position of a colony. Many bacterial remnants are visible, one 
of which contains an R-body; such bodies are shown enlarged in (B) and (C). (B) A pair of 
R-bodies, oriented at right angle towards each other, one as a cross-section and the other 
one cut oblique-longitudinally. The bipartite, black-white organization of the spiral layers 
is shown, and the averaged intensity profile (C, inset) of the boxed area shows a regular 
spacing of 10 nm. 
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Table 1. Classification and general features of L. alexandrii DFL-11T according to the MIGS recommendations [14]. 
MIGS ID Property Term Evidence code 

  Domain Bacteria TAS [15] 

  Phylum Proteobacteria TAS [16] 

  Class Alphaproteobacteria TAS [17,18] 

 Classification Order Rhodobacterales TAS [17,19] 

  Family Rhodobacteraceae TAS [17,20] 

  Genus Labrenzia TAS [1] 

  Species Labrenzia alexandrii TAS [1] 

MIGS-7 Subspecific genetic lineage Strain DFL-11 TAS [1] 

 Gram stain Gram-negative TAS [1] 

 Cell shape rod-shaped TAS [1] 

 Motility motile TAS [1] 

 Sporulation not reported  

 Temperature range mesophile TAS [1] 

 Optimum temperature 26°C TAS [1] 

 Salinity 1–10 % (w/v) sea salt TAS [1] 

MIGS-22 Relationship to oxygen aerobe TAS [1] 

 Carbon source acetate, butyrate and malate TAS [1] 

 Energy metabolism photoheterotroph TAS [1] 

MIGS-6 Habitat marine TAS [1] 

MIGS-6.2 pH 6.0–9.2 TAS [1] 

MIGS-15 Biotic relationship host-associated TAS [1] 

MIGS-14 Known pathogenicity none TAS [1] 

MIGS-16 Specific host Alexandrium lusitanicum TAS [1] 

MIGS-18 Health status of host not reported  

 Biosafety level 1 TAS [21] 

MIGS-19 Trophic level not reported  

MIGS-23.1 Isolation ME207 TAS [1] 

MIGS-4 Geographic location not reported  

MIGS-5 Time of sample collection April 1, 2002 TAS [1] 

MIGS-4.1 Latitude 54.133 TAS [1] 

MIGS-4.2 Longitude 7.867 TAS [1] 

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes – TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-
traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a gen-
erally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene On-
tology project [22]. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality High quality draft 

MIGS-28 Libraries used 
Two genomic libraries: 40kb fosmid library and 3 kB pUC18 plasmid li-
brary 

MIGS-29 Sequencing platforms ABI3730 
MIGS-31.2 Sequencing coverage 9.1 × Sanger 
MIGS-30 Assemblers Consed 20.0 
MIGS-31.3 Contig count 6 
MIGS-32 Gene calling method Genemark 4.6b, tRNAScan-SE-1.23, Infernal 0.81 
 INSDC ID Final ID pending; previous version ACCU00000000 
 Genbank Date of Release N/A 
 GOLD ID Gi01459 
 NCBI project ID 19367 
 Database: IMG 2517287006 
MIGS-13 Source Material Identifier DSM 17067 
 Project relevance Environmental, Marine Microbial Initiative 

Genome sequencing and assembly 
The genome was sequenced with the Sanger tech-
nology using a combination of two libraries. All 
general aspects of library construction and se-
quencing performed at the JCVI can be found on 
the JCVI website. Base calling of the sequences 
were performed with the phredPhrap script using 
default settings. The reads were assembled using 
the phred/phrap/consed pipeline [31]. The last 
gaps were closed by adding new reads produced 
by recombinant PCR and PCR primer walks. In to-
tal 21 reads were required for gap closure and 
improvement of low quality regions. The final 
consensus sequence was built from 60,668 Sanger 
reads (9.1 × coverage). 

Genome annotation 
Gene prediction was carried out using GeneMark as 
part of the genome annotation pipeline in the Inte-
grated Microbial Genomes Expert Review (IMG-ER) 
system [32]. To identify coding genes, Prodigal [33] 
was used, while ribosomal RNA genes within the 
genome were identified using the tool RNAmmer 
[34]. Other non-coding genes were predicted using 
Infernal [35]. Manual functional annotation was per-
formed within the IMG platform [32] and the Arte-
mis Genome Browser [36]. 

Genome properties 
The genome statistics are provided in Table 3 and 
Figures 3a, 3b and 3c. The genome consists of a 
5,299,280 bp long chromosome and two plasmids 
with 68,647 bp and 93,929 bp length, respectively, 
with a G+C content of 56.4%. Of the 5,144 genes 
predicted, 5,071 were protein-coding genes, and 

73 RNAs; pseudogenes were not identified. The 
majority of the protein-coding genes (81.0%) 
were assigned a putative function while the re-
maining ones were annotated as hypothetical pro-
teins. The distribution of genes into COGs func-
tional categories is presented in Table 4. 

Insights into the genome 
R-body genes 
In 'Caedibacter taeniospiralis', three genes (rebA, 
rebB and rebC) were identified to determine the R-
body production. They are clustered on large plas-
mids, ranging from 41-49 kb, and encompass 345 
bp, 318 bp and 171 bp (accession number 
U04524), respectively. The corresponding proteins 
RebA (114 aa, 18 kDa), RebB (105 aa, 13 kDa) and 
RebC (56aa, 10 kDa) are necessary to assemble R-
bodies through polymerization processes [37]. Fur-
thermore, a putative forth gene rebD (249 bp; RepD 
82aa) is located between rebB and rebC and might 
be involved in R-body formation. 
Based on high sequence similarities to the C. 
taeniospiralis R-body protein RebB, three homo-
logues (ladfl_00000850, ladfl_00000900 and 
ladfl_00000910) were detected on the chromosome 
of strain DFL-11T. Their amino acid sequence length 
is 122 aa, 109 aa and 76 aa, respectively, which is in 
accordance with R-body proteins found in C. 
taeniospiralis 47, and they were all assigned to the 
Pfam family RebB (PF11747). The chromosomal 
arrangement of R-body genes in strain DFL-11T is 
not contiguous; ladfl_0000085 is separated from 
ladfl_0000090 and ladfl_0000091 by four hypothet-
ical genes (ladfl_0000086 - ladfl_0000089). Interest-
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ingly, a putative alternative sigma-factor of the ECF 
subfamily (ladfl_0000084, upstream of 
ladfl_0000085) flanks the R-body gene cluster, indi-
cating that reb gene expression in strain DFL-11T is 
regulated by extracytoplasmic stimuli. Gene ar-
rangements orthologous to the L. alexandrii DFL-11T 

reb gene cluster were found in the 
alphaproteobacteria Roseibium sp. TrichSKD4 
(NZ_GL47637) and Polymorphum gilvum 
(NC_015259), organisms which are closely related to 
L. alexandrii [38]. 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 5,461,856 100.00 

DNA coding region (bp) 4,871,168 89.19 

DNA G+C content (bp) 3,080,828 56.41 

Number of replicons 3  

Extrachromosomal elements 2  

Total genes 5,144 100.00 

RNA genes 73 1.42 

rRNA operons 3  

tRNA genes 52 1.01 

Protein-coding genes 5,071 98.58 

Pseudo genes 0  

Genes with function prediction 4,168 81.03 

Genes in paralog clusters 1,866 36.28 

Genes assigned to COGs 4,140 80.48 

Genes assigned Pfam domains 4,203 81.71 

Genes with signal peptides 1,147 22.30 

Genes with transmembrane helices 1,264 24.57 

CRISPR repeats 0  

Plasmids 
Genome sequencing of L. alexandrii DSM 17067T 
reveals the presence of two RepABC-type plas-
mids designated LADFL_5 and LADFL_6 with sizes 
of 93,929 bp and 68,647 bp, respectively. This 
outcome is in agreement with a previous study 
about the genome organization of different marine 
Alphaproteobacteria including DFL-11T [39]. 
Pulsed-field gel electrophoresis (PFGE) showed 
faint bands with estimated sizes of 88 kb and 65 
kb, and their circular conformation has been doc-
umented by comparative analyses with distinct 
PFGE parameters. An additional linear fragment of 
about 35 kb, which has not been recovered by ge-
nome sequencing, may represent a prophage (see 
below) whose excision from the genome depends 
on the cultivation conditions. Both plasmids rep-
resent RepABC-type replicons with the partition-
ing genes repA and repB as well as the replicase 
repC that are located in a typical operon [40]. Phy-

logenetic analyses of the replicases provides the 
basis for the classification of alphaproteobacterial 
plasmids [41]. The respective phylogeny of both 
RepC sequences from L. alexandrii DSM 17067T 
(ladfl_05027, ladfl_05140) documents a close affil-
iation with rhizobial genes to an exclusion of se-
quences from Rhodobacterales that are located in 
distinct subtrees (data not shown [42] ). Both 
plasmids seem to be equipped with characteristic 
post segregational killing systems consisting of a 
toxin/antitoxin operon that prevent plasmid loss 
(ladfl_05100/ladfl_05101, 
ladfl_05128/ladfl_05129 [43] ). 
Plasmid LADFL_5 contains several genes that are 
related to heavy-metal resistance [44] and eight of 
them are related to the COG category “Inorganic 
ion transport and metabolism” (see also Table 4). 
This set includes the mer-operon composed of 
merR, merT, merF and mercuric reductase MerA, 
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which are part of the Gram-negatives' mercury-
resistance system [45]. This plasmid also harbors 
a predicted P-type ATPase translocating heavy-
metal ions and components of a Cd2+, Zn2+ or 
Co2+ efflux system. The resistance to a wide pallet 
of heavy-metal ions may enable the strain to dwell 
in polluted environments [44]. The second con-
spicuous trait of LADFL_5 is the presence of a 
complete type-IV secretion system (T4SS [46] ). 
The virB operon (ladfl_05033 to ladfl_05043) is 
required for the formation of a functional 
transmembrane channel and pilus formation. 

Moreover, the virD gene cluster including the 
characteristic DNA relaxase (ladfl_05091) and the 
coupling protein VirD4 (ladfl_05093) indicates 
that the T4SS machinery represents a functional 
conjugation system. The lysozyme TraH_2 
(ladfl_05088), which is required for the degrada-
tion of the peptidoglycan cell wall and 
transmembrane channel formation, is annotated 
as specific protein of Rhizobiales, an affiliation that 
is in agreement with the outcome of the phyloge-
netic RepC analysis [42]. 

 

 
Figure 3a. Graphical map of the chromosome. From outside to the center: Genes on forward strand (color by COG 
categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs 
black), GC content, GC skew. 
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Figure 3b. The larger of the two plasmids (LADFL_5, not drawn to 
scale with the chromosome). From outside to the center: Genes 
on forward strand (color by COG categories), genes on reverse 
strand (color by COG categories), RNA genes (tRNAs green, 
rRNAs red, other RNAs black), GC content, GC skew. 

 
Figure 3c. The smaller of the two plasmids (LADFL_6, not drawn 
to scale with the chromosome). From outside to the center: 
Genes on forward strand (color by COG categories), Genes on 
reverse strand (color by COG categories), RNA genes (tRNAs 
green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 

Code Value %age Description 

J 179 3.88 Translation, ribosomal structure and biogenesis 

A 2 0.04 RNA processing and modification 

K 363 7.86 Transcription 

L 133 2.88 Replication, recombination and repair 

B 3 0.06 Chromatin structure and dynamics 

D 38 0.82 Cell cycle control, cell division, chromosome partitioning 

Y 0 0 Nuclear structure 

V 51 1.10 Defense mechanisms 

T 330 7.15 Signal transduction mechanisms 

M 223 4.83 Cell wall/membrane/envelope biogenesis 

N 115 2.49 Cell motility 

Z 2 0.04 Cytoskeleton 

W 0 0 Extracellular structures 

U 91 1.97 Intracellular trafficking, secretion, and vesicular transport 

O 167 3.62 Posttranslational modification, protein turnover, chaperones 

C 260 5.63 Energy production and conversion 

G 276 5.98 Carbohydrate transport and metabolism 

E 518 11.22 Amino acid transport and metabolism 

F 91 1.97 Nucleotide transport and metabolism 

H 174 3.77 Coenzyme transport and metabolism 

I 186 4.03 Lipid transport and metabolism 

P 232 5.02 Inorganic ion transport and metabolism 

Q 136 2.95 Secondary metabolites biosynthesis, transport and catabolism 

R 582 12.61 General function prediction only 

S 465 10.07 Function unknown 

- 1,004 19.52 Not in COGs 

 
Plasmid LADFL_6 is dominated by more than a 
dozen genes that are involved in sugar metabo-
lism. It contains the complete operon for the con-
version of glucose-1-phosphate into dTDP-L-
rhamnose (rmlC, rmlD, rmlA, rmlB) that is a com-
mon component of the cell wall and capsule of 
many pathogenic bacteria [47]. Three 
glycosyltransferases, some components of an ABC-
type polysaccharide transport system as well as a 
sugar transferase for lipopolysaccharide synthesis 

and a lipid A core O-antigen ligase (ladfl_05144, 
ladfl_05145) are indicative for a functional role of 
the plasmid for exopolysaccharide formation. Ex-
tracellular polysaccharids of the Sym plasmid are 
required for root hair attachment in Rhizobium 
leguminosarum [48] and the plasmid LADFL_6 
may also be required for biofilm generation. This 
prediction is compatible with the origin of strain 
DFL-11T that has been isolated from the 
dinoflagellate A. lusitanicum [1]. 
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