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Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the 
bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily tar-
geted for non-type strain genome sequencing. Strain Kondô 67T was initially (1958) identi-
fied as a member of ‘Acetobacter aurantius’, a name that was not considered for the ap-
proved list. Kondô 67T was therefore later designated as the type strain of the newly pro-
posed acetogenic species Frateuria aurantia. The strain is of interest because of its 
triterpenoids (hopane family). F. aurantia Kondô 67T is the first member of the genus 
Frateura whose genome sequence has been deciphered, and here we describe the features 
of this organism, together with the complete genome sequence and annotation. The 
3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part 
of the Genomic Encyclopedia of Bacteria and Archaea project. 
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Introduction 
Strain Kondô 67T, also known as G-6T and as IFO 
3245T (= DSM 6220 = ATCC 33424 = NBRC 3245) 
is the type strain of the species Frateuria aurantia 
[1], the type species in the bispecific genus 
Frateuria [1]. Kondô 67T was originally isolated 
from Lilium auratum Lindl and classified as a 
member of ‘Acetobacter aurantius’ from which it 
was reclassified 22 years later as the type strain of 
the type species of Frateuria [1]. The genus was 
named after the Belgian microbiologist Joseph 
Frateur (1903-1974) [1]; the species epithet is 
derived from the Neo-Latin adjective aurantia, 
referring to the gold-yellow color of the strain on 
MYP agar [1]. Strain Kondô 67T was characterized 
as ‘acetogenic’ [2] and as containing triterpenoids 
of the hopane family [3]. Here we present a sum-
mary classification and a set of features for F. 
aurantia Kondô 67T, together with the description 
of the genomic sequencing and annotation. 

Classification and features 
A representative genomic 16S rRNA gene sequence 
of strain Kondô 67T was compared using NCBI 
BLAST [4,5] under default settings (e.g., consider-
ing only the high-scoring segment pairs (HSPs) 
from the best 250 hits) with the most recent re-
lease of the Greengenes database [6] and the rela-
tive frequencies of taxa and keywords (reduced to 
their stem [7]) were determined, weighted by 
BLAST scores. The most frequently occurring gene-
ra were Dyella (34.3%), Rhodanobacter (24.0%), 
Frateuria (19.6%), Luteibacter (11.9%) and 
'Luteibactor' (3.7%) (105 hits in total). Regarding 
the eleven hits to sequences from members of the 
species, the average identity within HSPs was 
99.6%, whereas the average coverage by HSPs was 
100.0%. Among all other species, the one yielding 
the highest score was Dyella ginsengisoli 
(EF191354), which corresponded to an identity of 
98.2% and an HSP coverage of 99.0%. (Note that 
the Greengenes database uses the INSDC (= 
EMBL/NCBI/DDBJ) annotation, which is not an au-
thoritative source for nomenclature or classifica-
tion.) The highest-scoring environmental sequence 
was HM556321 ('insect herbivore microbiome 
plant biomass-degrading capacity Atta colombica 
colony N11 fungus garden top clone TIBW663'), 
which showed an identity of 99.7% and an HSP 
coverage of 97.2%. The most frequently occurring 
keywords within the labels of all environmental 
samples which yielded hits were 'soil' (5.9%), 

'sediment' (2.5%), 'microbi' (1.8%), 'enrich' (1.5%) 
and 'vent' (1.3%) (145 hits in total). The most fre-
quently occurring keyword within the labels of 
those environmental samples which yielded hits of 
a higher score than the highest scoring species was 
'atta, biomass-degrad, capac, colombica, coloni, 
fungu, garden, herbivor, insect, microbiom, plant, 
top' (8.3%) (6 hits in total), reflecting some of the 
known features of the strain’s origin. 

Figure 1 shows the phylogenetic neighborhood of 
F. aurantia in a 16S rRNA based tree. The se-
quences of the four identical 16S rRNA gene cop-
ies in the genome differ by one nucleotide from 
the previously published 16S rRNA sequence 
(AB091194). 

F. aurantia Kondô 67T cells stain Gram-negative 
[1], were straight rod shaped, 0.5-0.7 μm in width 
and 0.7-3.5 μm in length (Figure 2) [1] and motile 
via polar flagella [1] (not visible in Figure 2). Cells 
occur singly or in pairs, rarely in filaments [1]. 
Cultures grow in dark, glistening, flat colonies 
with a soluble brown pigment [1]. They are oxi-
dase positive and catalase negative [1]; physiolog-
ical features and antibiotic susceptibilities were 
reported in great detail in [1]. Cells grow well at 
pH 3.6 and 34°C [1]. 

Chemotaxonomy 
Besides trace amounts of diploptene and rear-
ranged compounds like fern-7-ene [3], the main 
lipids isolated from DSM 6220T are iso-branched 
fatty acids and triterpenoids of the hopane family, 
such as bacteriohopanetetrol and derived 
hopanoid. The organism also produces ubiquinone 
Q8 [27]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [28], and is part 
of the Genomic Encyclopedia of Bacteria and 
Archaea project [29]. The genome project is de-
posited in the Genomes On Line Database [14] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI) using state of the art sequencing tech-
nology [30]. A summary of the project information 
is shown in Table 2. 

http://dx.doi.org/10.1601/nm.2235�
http://dx.doi.org/10.1601/nm.2234�
http://dx.doi.org/10.1601/nm.857�
http://dx.doi.org/10.1601/nm.2234�
http://dx.doi.org/10.1601/nm.2235�
http://dx.doi.org/10.1601/nm.2235�
http://dx.doi.org/10.1601/nm.9359�
http://dx.doi.org/10.1601/nm.2251�
http://dx.doi.org/10.1601/nm.2234�
http://dx.doi.org/10.1601/nm.9721�
http://dx.doi.org/10.1601/nm.14140�
http://dx.doi.org/10.1601/nm.2235�
http://dx.doi.org/10.1601/nm.2235�


Anderson et al. 

http://standardsingenomics.org 85 

 
Figure 1. Phylogenetic tree highlighting the position of F. aurantia relative to the type strains of the other species 
within the family Xanthomonadaceae. The tree was inferred from 1,431 aligned characters [8,9] of the 16S rRNA 
gene sequence under the maximum likelihood (ML) criterion [10]. Rooting was done initially using the midpoint 
method [11] and then checked for its agreement with the current classification (Table 1). The branches are scaled 
in terms of the expected number of substitutions per site. Numbers adjacent to the branches are support values 
from 750 ML bootstrap replicates [12] (left) and from 1,000 maximum-parsimony bootstrap replicates [13] (right) if 
larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [14] are labeled with 
one asterisk, those also listed as 'Complete and Published' with two asterisks. 

 
Figure 2. Scanning electron micrograph of F. aurantia Kondô 67T 
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Table 1. Classification and general features of F. aurantia Kondô 67T according to the MIGS recommenda-
tions [15] (published by the Genome Standards Consortium [16]) and NamesforLife [17]. 

MIGS ID Property Term Evidence code 

 
Current classification 
 

Domain Bacteria TAS [18] 

Phylum Proteobacteria TAs [19] 

Class Gammaproteobacteria TAS [20,21] 

Order Xanthomonadales TAS [20,22] 

Family Xanthomonadaceae TAS [20,22] 

Genus Frateuria TAS [1,23] 

Species Frateuria aurantia TAS [1] 

Type strain Kondô 67 = G-6 = IFO 3245 TAS [1] 

 Gram stain negative TAS [1] 

 Cell shape rod-shaped, mostly strait TAS [1] 

 Motility motile TAS [1] 

 Sporulation not reported  

 Temperature range mesophile TAS [1] 

 Optimum temperature 30°C TAS [1] 

 Salinity 0.2 - 2% NaCl (w/v) TAS [1] 

MIGS-22 Oxygen requirement aerobe TAS [1] 

 Carbon source glucose, yeast extract, mannitol, peptone TAS [1] 

 Energy metabolism organoheterotroph TAS [1] 

MIGS-6 Habitat Lilium auratum TAS [1] 

MIGS-15 Biotic relationship host-associated TAS [1] 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 TAS [24] 

MIGS-23.1 Isolation from Lilium auratum Lindl TAS [25] 

MIGS-4 Geographic location Kawasaki, Japan TAS [1] 

MIGS-5 Sample collection time 1958 or before TAS [25] 

MIGS-4.1 Latitude 35.50 TAS [1] 

MIGS-4.2 Longitude 139.77 TAS [1] 

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-
traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a gen-
erally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene On-
tology project [26]. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two genomic libraries: one 454 PE library (7.5 kb insert size), one 
Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 537.4 × Illumina; 8.6 × pyrosequence 

MIGS-30 Assemblers 
Newbler version 2.3-PreRelease-6/30/2009, Velvet 1.0.13, phrap  
version SPS - 4.24 

MIGS-32 Gene calling method Prodigal 

 INSDC ID CP003350 

 GenBank Date of Release June 14, 2012 

 GOLD ID Gc02155 

 NCBI project ID 64505 

 Database: IMG 2509601034 

MIGS-13 Source material identifier DSM 6220 

 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
F. aurantia strain Kondô 67T, DSM 6220, was 
grown in DSMZ medium 360 (YPM medium) [31] 
at 30°C. DNA was isolated from 0.5-1 g of cell 
paste using standard procedures at the DSMZ DNA 
laboratory and quality control processes request-
ed by the sequencing center (JGI). DNA is available 
through the DNA Bank Network [32]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [33]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 36 contigs in one scaffold 
was converted into a phrap [34] assembly by mak-
ing fake reads from the consensus, to collect the 
read pairs in the 454 paired end library. Illumina 
GAii sequencing data (2,074.3 Mb) was assembled 
with Velvet [35] and the consensus sequences 
were shredded into 1.5 kb overlapped fake reads 

and assembled together with the 454 data. The 
454 draft assembly was based on 63.7Mb 454 
draft data. Newbler parameters are -consed -a 50 -
l 350 -g -m -ml 20. The Phred/Phrap/Consed 
software package [34] was used for sequence as-
sembly and quality assessment in the subsequent 
finishing process. After the shotgun stage, reads 
were assembled with parallel phrap (High Per-
formance Software, LLC). Possible mis-assemblies 
were corrected with gapResolution [33], 
Dupfinisher [36], or sequencing cloned bridging 
PCR fragments with subcloning. Gaps between 
contigs were closed by editing in Consed, by PCR 
and by Bubble PCR primer walks (J.-F. Chang, un-
published). A total of 43 additional reactions and 
one shatter library were necessary to close gaps 
and to raise the quality of the final sequence. 
Illumina reads were also used to correct potential 
base errors and increase consensus quality using a 
software Polisher developed at JGI [37]. The error 
rate of the final genome sequence is less than 1 in 
100,000.  
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Together, the combination of the Illumina and 454 
sequencing platforms provided 546.0 × coverage 
of the genome. The final assembly contained 
163,130 pyrosequence and 25,455,174 Illumina 
reads. 

Genome annotation 
Genes were identified using Prodigal [38] as part 
of the DOE-JGI [39] genome annotation pipeline, 
followed by a round of manual curation using the 
JGI GenePRIMP pipeline [40]. The predicted CDSs 
were translated and used to search the National 
Center for Biotechnology Information (NCBI) non-
redundant database, UniProt, TIGRFam, Pfam, 
PRIAM, KEGG, COG, and InterPro databases. These 
data sources were combined to assert a product 

description for each predicted protein. Additional 
gene prediction analysis and functional annotation 
were performed within the Integrated Microbial 
Genomes - Expert Review (IMG-ER) platform [41]. 

Genome properties 
The genome consists of a 3,603,458 bp long circu-
lar chromosome with a G+C content of 63.4% (Ta-
ble 3 and Figure 3). Of the 3,288 genes predicted, 
3,200 were protein-coding genes, and 88 RNAs; 99 
pseudogenes were also identified. The majority of 
the protein-coding genes (79.6%) were assigned a 
putative function while the remaining ones were 
annotated as hypothetical proteins. The distribu-
tion of genes into COGs functional categories is 
presented in Table 4. 

 

Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 3,603,458 100.00% 

DNA coding region (bp) 3,189,580 88.51% 

DNA G+C content (bp) 2,284,441 63.40% 

Number of replicons 1  

Extrachromosomal elements 0  

Total genes 3,288 100.00% 

RNA genes 88 2.68% 

rRNA operons 4  

tRNA genes 73 2.22% 

Protein-coding genes 3,200 97.32% 

Pseudo genes 99 3.01% 

Genes with function prediction (proteins) 2,616 79.56% 

Genes in paralog clusters 1,350 41.06% 

Genes assigned to COGs 2,610 79.38% 

Genes assigned Pfam domains 2,724 82.85% 

Genes with signal peptides 313 9.52% 

Genes with transmembrane helices 722 21.96% 

CRISPR repeats 1  
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Figure 3. Graphical map of the chromosome. From outside to center: Genes on forward strand (colored by COG 
categories), Genes on reverse strand (colored by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs 
black), GC content(black), GC skew (purple/olive). 
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Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 

J 167 5.7 Translation, ribosomal structure and biogenesis 

A 1 0.0 RNA processing and modification 

K 192 6.6 Transcription 

L 145 5.0 Replication, recombination and repair 

B 1 0.0 Chromatin structure and dynamics 

D 30 1.0 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 56 1.9 Defense mechanisms 

T 129 4.4 Signal transduction mechanisms 

M 214 7.3 Cell wall/membrane biogenesis 

N 92 3.1 Cell motility 

Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 

U 112 3.8 Intracellular trafficking and secretion, and vesicular transport 

O 133 4.5 Posttranslational modification, protein turnover, chaperones 

C 186 6.4 Energy production and conversion 

G 170 5.8 Carbohydrate transport and metabolism 

E 209 7.1 Amino acid transport and metabolism 

F 68 2.3 Nucleotide transport and metabolism 

H 143 4.9 Coenzyme transport and metabolism 

I 101 3.5 Lipid transport and metabolism 

P 146 5.0 Inorganic ion transport and metabolism 

Q 63 2.2 Secondary metabolites biosynthesis, transport and catabolism 

R 323 11.0 General function prediction only 

S 246 8.4 Function unknown 

- 678 20.6 Not in COGs 
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