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Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that has the capacity to be 
an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) spe-
cies. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated 
from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is produced 
commercially in Australia as an inoculant for a broad range of annual clovers of Mediterra-
nean origin due to its superior attributes of saprophytic competence, nitrogen fixation and ac-
id-tolerance. Here we describe the basic features of this organism, together with the complete 
genome sequence, and annotation. This is the first completed genome sequence for a micro-
symbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 
protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 
distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924 bp, 
660,973 bp, 516,088 bp, 350,312 bp and 294,782 bp. 

Introduction 
The productivity of agricultural systems is heavily 
dependent on nitrogen (N) [1]. The requirement 
for N-input can be met by the application of ex-
ogenous N-fertilizer manufactured through the 
Haber-Bosch process, but as the cost of fossil fuel-
derived energy increases, so does the cost to man-
ufacture and apply such fertilizer. Furthermore, 
there are inherent issues with the synthesis and 
application of N-fertilizer, including greenhouse 
gas emissions and run-off causing eutrophication. 
Alternatively, N can be obtained from symbiotic 

nitrogen fixation (SNF) by root nodule bacteria 
(rhizobia) on nodulated legumes [2]; this is a key 
biological process in natural and agricultural envi-
ronments driven by solar radiation and utilizing 
atmospheric CO2. The commonly accepted figure 
for global SNF in agriculture is 50-70 million me-
tric tons annually, worth in excess of U.S. $10 bil-
lion [3]. Rhizobia are applied across 400 million 
ha of agricultural land per annum to improve le-
gume forage and crop production through symbi-
otic N-fixation [3]. 
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The clover (Trifolium) nodulating Rhizobium  R. le-
guminosarum bv. trifolii is amongst the most ex-
ploited species of root-nodule bacteria in world 
agriculture. Clovers are widely grown pasture le-
gumes and include both annual species (e.g. T. sub-
terraneum) and perennial species (e.g. T. pratense, 
T. repens and T. polymorphum). Clovers are 
adapted to a wide range of environments, from 
sub-tropical to moist Mediterranean systems, and 
thus are important nitrogen-fixing legumes in 
many natural and agricultural regions of North 
and South America, Europe, Africa and Australasia 
[4]. 
Rhizobium leguminosarum bv. trifolii strain 
WSM1325 was isolated from a nodule recovered 
from the roots of an annual clover plant growing 
near Livadi beach on the Greek Cyclades island of 
Serifos in 1993 [5]. Strain WSM1325 is of particu-
lar interest because it is a highly effective nitro-
gen-fixing microsymbiont of a broad range of an-
nual clovers of Mediterranean origin [5] and is al-
so saprophytically competent in acid, infertile 
soils of both Uruguay and southern Australia [6]. 
Strain WSM1325 is an effective microsymbiont 
under competitive conditions for nodulation in 
what appears to be a host-mediated selection 
process [7]. 

As well as being a highly effective inoculant strain 
for annual Trifolium spp., strain WSM1325 is com-
patible with key perennial clovers of Mediterra-
nean origin used in farming, such as T. repens and 
T. fragiferum, and is therefore one of the most im-
portant clover inoculants used in agriculture. 
However, WSM1325 is incompatible with Ameri-
can and African clovers, sometimes nodulating but 
never fixing N [5]. This is in contrast to other Rhi-
zobium leguminosarum bv. trifolii strains, such as 
WSM2304, which are effective at N-fixation with 
some perennial American clovers, but ineffective 
with the Mediterranean clovers [5-7]. 
Here we present a summary classification and a 
set of features for R. leguminosarum bv. trifolii 
strain WSM1325 (Table 1), together with the de-
scription of a complete genome sequence and an-
notation. 

Classification and features 
R. leguminosarum bv. trifolii WSM1325 is a motile, 
Gram-negative, non-spore-forming rod (Figure 
1A,B) in the Rhizobiaceae family of the class Al-
phaproteobacteria that forms mucoid colonies 
(Figure 1C) on solid media [24]. It has a mean 
generation time of 3.9 h in rich medium at the op-
timal growth temperature of 28°C [7]. 

 

 
Figure 1. Images of R. leguminosarum bv. trifolii strain WSM1325 using scanning (A) and 
transmission (B) electron microscopy and the appearance of colony morphology on solid 
media (C). 
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Figure 2 shows the phylogenetic neighborhood of 
R. leguminosarum bv. trifolii strain WSM1325 in a 
16S rRNA-based tree. An intragenic fragment of 
1,440 bp was chosen since the 16S rRNA gene has 
not been completely sequenced in many type 
strains. A comparison of the entire 16S rRNA gene 

of WSM1325 to completely sequenced 16S rRNA 
genes of other rhizobia revealed 100% gene se-
quence identity to the same gene of R. leguminosa-
rum bv. trifolii strain WSM2304 but revealed a 1 
bp difference to the same gene of R. leguminosa-
rum bv. viciae strain 3841. 

 

 
Figure 2. Phylogenetic tree showing the relationships of R. leguminosarum bv trifolii strain WSM1325 with 
the type strains of Rhizobiaceae based on aligned sequences of the 16S rRNA gene (1,440 bp internal region). 
All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed us-
ing MEGA, version 3.1 [25]. Kimura two-parameter distances were derived from the aligned sequences [26] 
and a bootstrap analysis [27] as performed with 500 replicates in order to construct a consensus unrooted 
tree using the neighbor-joining method [28] for each gene alignment separately. B.-Bradyrhizobium; M.-
Mesorhizobium; R.-Rhizobium; S-Ensifer (Sinorhizobium). Type strains are indicated with a superscript T. 
Strains with a genome sequencing project registered in GOLD [22] are in bold red print. Published genomes 
are designated with an asterisk. 
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Symbiotaxonomy 
R. leguminosarum bv. trifolii WSM1325 nodulates 
(Nod+) and fixes nitrogen effectively (Fix+) with a 
wide range of annual clovers of Mediterranean 
origin which are in commercial agriculture, global-
ly. Examples of these clover species include T. sub-
terraneum, T. vesiculosum, T. purpureum T. glandu-
liferum, T. resupinatum, T. michellianum and T. in-
carnatum. An illustration of the ability of 
WSM1325 to fix nitrogen effectively across a 
range of annual clover species is displayed in Fig-
ure 3. Additionally, WSM1325 is Fix+ with some 
Mediterranean perennial clovers such as T. repens 
and T. fragiferum, but is inconsistently Nod+, and 
consistently Fix- with clovers of African and Amer-
ican origin [5,30]. Under conditions of competitive 
nodulation, WSM1325 may preferentially nodu-
late T. purpureum even when outnumbered 100:1 
by WSM2304 [7]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its environmental and agricultural relev-
ance to issues in global carbon cycling, alternative 
energy production, and biogeochemical impor-
tance, and is part of the Community Sequencing 
Program at the US Department of Energy Joint Ge-
nome Institute (JGI) for projects of relevance to 
agency missions. The genome project is deposited 
in the Genomes OnLine Database [22] and the 
complete genome sequence in GenBank. Sequenc-
ing, finishing and annotation were performed by 
the DOE Joint Genome Institute (JGI). A summary 
of the project information is shown in Table 2. 

Growth conditions and DNA isolation 
R. leguminosarum bv. trifolii WSM1325 was grown 
to mid logarithmic phase in TY medium (a rich 
medium) [31] on a gyratory shaker at 28°C. DNA 
was isolated from 60 mL of cells using a CTAB 
(Cetyl trimethylammonium bromide) bacterial 
genomic DNA isolation method . 

 
Figure 3. An illustration of the N-fixing capacity of R. leguminosarum bv. trifolii WSM1325 with four annual Trifo-
lium spp. (T. vesiculosum, T. dasyurum (pots with orange tags), T. isthmocarpum and T. spumosum (pots with blue 
tags) in four replicates, front to back), compared with superseded Australian inoculants; far left WU95 (1968 to 
1994), middle WSM409 (1994 to 2004) and right, WSM1325 (Australian commercial inoculant strain 2004 to 
present [29]). 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing performed at the JGI can be found at 

http://www.jgi.doe.gov/. 454 Pyrosequencing 
reads were assembled using the Newbler assemb-
ler, version 1.1.02.15 (Roche). Large Newbler con-
tigs were broken into 6,084 overlapping frag-
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ments of 1,000 bp and entered into assembly as 
pseudo-reads. The sequences were assigned quali-
ty scores based on Newbler consensus q-scores 
with modifications to account for overlap redun-
dancy and to adjust inflated q-scores. A hybrid 
454/Sanger assembly was made using the parallel 
phrap assembler (High Performance Software, 
LLC). Possible mis-assemblies were corrected 
with Dupfinisher or transposon bombing of bridg-

ing clones [32]. Gaps between contigs were closed 
by editing in Consed, custom primer walk or PCR 
amplification. A total of 2,155 Sanger finishing 
reads were produced to close gaps, to resolve re-
petitive regions, and to raise the quality of the fi-
nished sequence. Together, all sequence types 
provided 36× coverage of the genome. The error 
rate of the completed genome sequence is less 
than 1 in 100,000. 

Table 1. Classification and general features of R. leguminosarum bv. trifolii WSM1325 according to the MIGS recommendations [8] 

MIGS ID Property Term Evidence code 

 Current classification 
 

Domain Bacteria TAS [9] 
Phylum Proteobacteria TAS [10,11] 
Class Alphaproteobacteria TAS [12,13] 
Order Rhizobiales TAS [13,14] 
Family Rhizobiaceae TAS [15,16] 
Genus Rhizobium TAS [17-19] 
Species Rhizobium leguminosarum TAS [18,20] 
Biovar trifolii Strain WSM1325  

 Gram stain negative TAS [17] 
 Cell shape rod TAS [17] 
 Motility motile TAS [17] 
 Sporulation non-sporulating TAS [17] 
 Temperature range mesophile TAS [17] 
 Optimum temperature 28°C TAS [17] 
 Salinity unknown TAS [17] 
MIGS-22 Oxygen requirement aerobic TAS [17] 
 Carbon source glucose, mannitol, glutamate TAS [5-7] 
 Energy source chemoorganotroph  
MIGS-6 Habitat Soil, root nodule, host TAS [5-7] 
MIGS-15 Biotic relationship Free living, Symbiotic TAS [5-7] 
MIGS-14 Pathogenicity none NAS [17] 
 Biosafety level 1 TAS [21] 
 Isolation Root nodule TAS [22] 
MIGS-4 Geographic location Livadi beach, Serifos, Cyclades, Greece TAS [22] 
MIGS-5 Nodule collection date April 1993 TAS [22] 
MIGS-4.1 
MIGS-4.2 

Longitude 
Latitude 

24.518901 
37.147034 TAS [22] 

MIGS-4.3 Depth not reported NAS 
MIGS-4.4 Altitude 2m TAS [22] 

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Au-
thor Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for 
the species, or anecdotal evidence). These evidence codes are from http://www.geneontology.org/GO.evidence.shtml of 
the Gene Ontology project [23]. If the evidence code is IDA, then the property was directly observed by one of the au-
thors or an expert mentioned in the acknowledgements. 
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Genome annotation 
Genes were identified using Prodigal [33] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePrimp pipeline [34]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, UniProt, 
TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro 
databases. Additional gene prediction analyses 
and functional annotation were performed within 
the Integrated Microbial Genomes (IMG-ER) plat-
form (http://img.jgi.doe.gov/er) [35]. 

Genome properties 
The genome is 7,418,122 bp long with a 60.77% 
GC content (Table 3) and comprised of 6 replicons; 
one circular chromosome of size 4,767,043 bp and 
five circular plasmids of size 828,924 bp, 660,973 
bp, 516,088 bp, 350,312 bp and 294,782 bp (Fig-
ure 4). Of the 7293 genes predicted, 7,232 were 
protein coding genes, and 61 RNA only encoding 
genes. Two hundred and thirty one pseudogenes 
were also identified. The majority of genes 
(74.21%) were assigned a putative function whilst 
the remaining genes were annotated as hypotheti-
cal proteins. The distribution of genes into COGs 
functional categories is presented in Table 4. 

Table 2. Genome sequencing project information for R. leguminosarum bv trifolii WSM1325 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 

Four genomic libraries: 
three Sanger libraries - 2 kb pTH1522, 8 kb 
pMCL200 and fosmid pcc1Fos 
and one 454 pyrosequence standard library 

MIGS-29 Sequencing platforms ABI3730xl, 454 GS FLX 
MIGS-31.2 Sequencing coverage 16× Sanger; 20× pyrosequence 
MIGS-30 Assemblers Newbler version 1.1.02.15, phrap 
MIGS-32 Gene calling method Prodigal 

 

Genbank ID 

CP001622 (Chomosome) 
CP001623 (pR132501) 
CP001624 (pR132502) 
CP001625 (pR132503) 
CP001626 (pR132504) 
CP001627 (pR132505) 

 Genbank Date of Release May 7, 2009 
 GOLD ID Gc01039  
 NCBI project ID 20097 
 Database: IMG 641736174 (draft) 
 Project relevance Symbiotic nitrogen fixation, agriculture 

Table 3. Genome Statistics for R. leguminosarum bv trifolii WSM1325 
Attribute Value % of Total 
Genome size (bp) 7,418,122 100.00 
DNA coding region (bp) 6,485,014 87.42 
DNA G+C content (bp) 4,507,991 60.77 
Number of replicons 6  
Extrachromosomal elements 5  
Total genes 7,293 100.00 
RNA genes 61 0.84 
rRNA operons 3  
Protein-coding genes 7,232 99.16 
Pseudo genes 231 3.17 
Genes with function prediction 5,412 74.21 
Genes in paralog clusters 1,947 26.70 
Genes assigned to COGs 5,453 74.77 
Genes assigned Pfam domains 5,497 75.37 
Genes with signal peptides 1,554 21.31 
Genes with transmembrane helices 1,629 22.34 
CRISPR repeats 0  
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Figure 4. Graphical circular maps of the chromosome and plasmids of R. leguminosarum bv trifolii WSM1325. From 
outside to the center: Genes on forward strand (color by COG categories as denoted by the IMG platform), Genes 
on reverse strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC content, 
GC skew. Chromosome and plasmids are not drawn to scale.  



Reeve et al. 

http://standardsingenomics.org  354 

 
Table 4. Number of genes associated with the general COG functional categories 
Code value % age Description 
J 195 2.70 Translation, ribosomal structure and biogenesis 
A 1 0.01 RNA processing and modification 
K 610 8.43 Transcription 
L 180 2.49 Replication, recombination and repair 
B 2 0.03 Chromatin structure and dynamics 
D 35 0.48 Cell cycle control, mitosis and meiosis 
Y 0 0.00 Nuclear structure 
V 69 0.95 Defense mechanisms 
T 358 4.95 Signal transduction mechanisms 
M 323 4.47 Cell wall/membrane biogenesis 
N 89 1.23 Cell motility 
Z 1 0.01 Cytoskeleton 
W 0 0.00 Extracellular structures 
U 83 1.15 Intracellular trafficking and secretion 
O 191 2.64 Posttranslational modification, protein turnover, chaperones 
C 316 4.37 Energy production and conversion 
G 688 9.51 Carbohydrate transport and metabolism 
E 644 8.90 Amino acid transport and metabolism 
F 108 1.49 Nucleotide transport and metabolism 
H 190 2.63 Coenzyme transport and metabolism 
I 227 3.14 Lipid transport and metabolism 
P 322 4.45 Inorganic ion transport and metabolism 
Q 160 2.21 Secondary metabolites biosynthesis, transport and catabolism 
R 777 10.74 General function prediction only 
S 586 8.10 Function unknown 
- 1,779 24.60 Not in COGs 

Acknowledgements 
This work was performed under the auspices of the US 
Department of Energy's Office of Science, Biological and 
Environmental Research Program, and by the Universi-
ty of California, Lawrence Berkeley National Laboratory 
under contract No. DE-AC02-05CH11231, Lawrence Li-
vermore National Laboratory under Contract No. DE-
AC52-07NA27344, and Los Alamos National Laborato-
ry under contract No. DE-AC02-06NA25396. We thank 

Gordon Thompson (Murdoch University) for the prepa-
ration of SEM and TEM photos. We gratefully acknowl-
edge the funding received from Murdoch University 
Strategic Research Fund through the Crop and Plant 
Research Institute (CaPRI), and the Grains Research 
and Development Corporation (GRDC), to support the 
National Rhizobium Program (NRP) and the Centre for 
Rhizobium Studies (CRS) at Murdoch University. 

References 
1. Peoples MB, Hauggaard-Nielsen H, Jensen ES. 

Chapter 13. The potential environmental benefits 
and risks derived from legumes in rotations. In: 
Emerich, DW & Krishnan HB (Eds.), Agronomy 
Monograph 52. Nitrogen Fixation in Crop Produc-
tion Am Soc Agron, Crop Sci Soc Am & Soil Sci 
Soc Am 2009, pp. 349-385 Madison, Wisconsin, 
USA. 

2. Sprent JI. Legume nodulation: a global perspective. 
2009. Oxford, Wiley-Blackwell. 

3. Herridge DF, Peoples MB, Boddey RM. Global 
inputs of biological nitrogen fixation in agricultur-
al systems. Marschner Review. Plant Soil 2008; 
311:1-18. doi:10.1007/s11104-008-9668-3    

4. Zohary M, Heller D. The Genus Trifolium. The 
Israel Academy of Sciences and Humanities, Ahva 
Printing Press 1984, Jerusalem. 

5. Howieson JG, Yates RJ, O'Hara GW, Ryder M, 
Real D. The interactions of Rhizobium legumino-
sarum biovar trifolii in nodulation of annual and 

http://standardsingenomics.org/�
http://dx.doi.org/10.1007/s11104-008-9668-3�


Rhizobium leguminosarum bv. trifolii strain WSM1325 

355 Standards in Genomic Sciences 

perennial Trifolium spp from diverse centres of 
origin. Aust J Exp Agric 2005; 45:199-207. 
doi:10.1071/EA03167    

6. Yates RJ, Howieson JG, Real D, Reeve WG, Vi-
vas-Marfisi A, O'Hara GW. Evidence of selection 
for effective nodulation in the Trifolium spp. sym-
biosis with Rhizobium leguminosarum biovar tri-
folii. Aust J Exp Agric 2005; 45:189-198. 
doi:10.1071/EA03168    

7. Yates RJ, Howieson JG, Reeve WG, Brau L, Spei-
jers J, Nandasena K, Real D, Sezmis E, O'Hara 
GW. Host-strain mediated selection for an effec-
tive nitrogen-fixing symbiosis between Trifolium 
spp. and Rhizobium leguminosarum biovar trifolii. 
Soil Biol Biochem 2008; 40:822-833. 
doi:10.1016/j.soilbio.2007.11.001    

8. Field D, Garrity G, Gray T, Morrison N, Selengut J, 
Sterk P, Tatusova T, Thomson N, Allen MJ, Angi-
uoli SV. Towards a richer description of our com-
plete collection of genomes and metagenomes: 
the “Minimum Information about a Genome Se-
quence” (MIGS) specification. Nat Biotechnol 
2008; 26:541-547.  PubMed 
doi:10.1038/nbt1360   

9. Woese CR, Kandler O, Wheelis ML. Towards a 
natural system of organisms: proposal for the do-
mains Archaea, Bacteria, and Eucarya. [2112744]. 
Proc Natl Acad Sci USA 1990; 87:4576-4579. 
PubMed doi:10.1073/pnas.87.12.4576   

10. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Pro-
teobacteria phyl. nov. In: Garrity GM, Brenner DJ, 
Krieg NR, Staley JT (eds), Bergey's Manual of Sys-
tematic Bacteriology, Second Edition, Volume 2, 
Part B, Springer, New York, 2005, p. 1. 

11. Editor L. Validation of publication of new names 
and new combinations previously effectively pub-
lished outside the IJSEM. List no. 106. Int J Syst 
Evol Microbiol 2005; 55:2235-2238; . 
doi:10.1099/ijs.0.64108-0  

12. Garrity GM, Bell JA, Lilburn T. Class I. Alphapro-
teobacteria class. nov. In: Garrity GM, Brenner DJ, 
Krieg NR, Staley JT (eds), Bergey's Manual of Sys-
tematic Bacteriology, Second Edition, Volume 2, 
Part C, Springer, New York, 2005, p. 1. 

13. Editor L. Validation List No. 107. List of new 
names and new combinations previously effec-
tively, but not validly, published. Int J Syst Evol 
Microbiol 2006; 56:1-6. PubMed 
doi:10.1099/ijs.0.64188-0   

14. Kuykendall LD. Order VI. Rhizobiales ord. nov. In: 
Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), 
Bergey's Manual of Systematic Bacteriology, 

Second Edition, Volume 2, Part C, Springer, New 
York, 2005, p. 324. 

15. Kuykendall LD. Order VI. Rhizobiales ord. nov. In: 
Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), 
Bergey's Manual of Systematic Bacteriology, 
Second Edition, Volume 2, Part C, Springer, New 
York, 2005, p. 324. 

16. Conn HJ. Taxonomic relationships of certain non-
sporeforming rods in soil. J Bacteriol 1938; 
26:320-321. 

17. Kuykendall LD, Hashem F, Wang ET. Genus VII. 
Rhizobium, 2005, pp 325-340. In: Bergey’s Ma-
nual of Systematic Bacteriology. Second Edition. 
Volume 2 The Proteobacteria. Part C The Alpha-, 
Delta-, and Epsilonproteobacteria. Brenner DJ, 
Krieg NR, Staley JT (Eds.), Garrity GM (Editor in 
Chief) Springer Science and Business Media Inc, 
New York, USA. 

18. Skerman VBD, McGowan V, Sneath PHA. Ap-
proved Lists of Bacterial Names. Int J Syst Bacte-
riol 1980; 30:225-420. doi:10.1099/00207713-
30-1-225   

19. Jordan DC, Allen ON. Genus I. Rhizobium Frank 
1889, 338; Nom. gen. cons. Opin. 34, Jud. 
Comm. 1970, 11. In: Buchanan RE, Gibbons NE 
(eds), Bergey's Manual of Determinative Bacteri-
ology, Eighth Edition, The Williams and Wilkins 
Co., Baltimore, 1974, p. 262-264. 

20. Dangeard PA. Recherches sur les tubercles radi-
caux des Légumineuses. Botaniste, Paris 1926; 
16:1-275. 

21. Biological Agents. Technical rules for biological 
agents http://www.baua.de TRBA 466. 

22. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides 
NC. The Genomes OnLine Database (GOLD) in 
2007: status of genomic and metagenomic 
projects and their associated metadata. Nucleic 
Acids Res 2008; 36:D475-D479.  PubMed 
doi:10.1093/nar/gkm884   

23. Ashburner M, Ball CA, Blake JA, Botstein D, But-
ler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, 
Eppig JT, et al. The Gene Ontology Consortium. 
Gene ontology: tool for the unification of biology. 
Nat Genet 2000; 25:25-29.  PubMed 
doi:10.1038/75556   

24. Howieson JG, Ewing MA, D'Antuono MF. Selec-
tion for acid tolerance in Rhizobium meliloti. 
Plant Soil 1988; 105:179-188. 
doi:10.1007/BF02376781    

25. Kumar S, Tamura K, Nei M. MEGA3: integrated 
software for molecular evolutionary genetics 

http://dx.doi.org/10.1071/EA03167�
http://dx.doi.org/10.1071/EA03168�
http://dx.doi.org/10.1016/j.soilbio.2007.11.001�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18464787&dopt=Abstract�
http://dx.doi.org/10.1038/nbt1360�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2112744&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2112744&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2112744&dopt=Abstract�
http://dx.doi.org/10.1073/pnas.87.12.4576�
http://dx.doi.org/10.1099/ijs.0.64108-0�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16403855&dopt=Abstract�
http://dx.doi.org/10.1099/ijs.0.64188-0�
http://dx.doi.org/10.1099/00207713-30-1-225�
http://dx.doi.org/10.1099/00207713-30-1-225�
http://www.baua.de/�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17981842&dopt=Abstract�
http://dx.doi.org/10.1093/nar/gkm884�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10802651&dopt=Abstract�
http://dx.doi.org/10.1038/75556�
http://dx.doi.org/10.1007/BF02376781�


Reeve et al. 

http://standardsingenomics.org  356 

analysis and sequence alignment. Brief Bioinform 
2004; 5:150-163.  PubMed 
doi:10.1093/bib/5.2.150   

26. Kimura M. A simple model for estimating evolu-
tionary rates of base substitutions through com-
parative studies of nucleotide sequences. J Mol 
Evol 1980; 16:111-120.  PubMed 
doi:10.1007/BF01731581   

27. Felsenstein J. Confidence limits on phylogenies: 
an approach using the bootstrap. Evolution 1985; 
39:783-791. doi:10.2307/2408678    

28. Saitou N, Nei M. Reconstructing phylogenetic 
trees. Mol Biol Evol 1987; 4:406-425. PubMed 

29. Bullard GK, Roughley RJ, Pulsford DJ. The legume 
inoculant industry and inoculant quality control 
in Australia: 1953–2003. Aust J Exp Agric 2005; 
45:127-140. doi:10.1071/EA03159    

30. Centre for Rhizobium Studies. Annual Report. 
2001. JG Howieson (Ed). Murdoch University 
Print, Perth, Australia. 

31. Reeve WG, Tiwari RP, Worsely PS, Dilworth MJ, 
Glenn AR, Howieson JG. Constructs for insertion-
al mutagenesis, transcriptional signal localisation 
and gene regulation studies in root nodule and 
other bacteria. Microbiology 1999; 145:1307-
1316.  PubMed doi:10.1099/13500872-145-6-
1307   

32. Sims D, Brettin T, Detter JC, Han C, Lapidus A , 
Copeland A, Glavina Del Rio T, Nolan M, Chen F, 
Lucas S, et al. Complete genome of Kytococcus 
sedentarius type strain (strain 541T). Stand Ge-
nomic Sci 2009; 1:12-20. doi:10.4056/sigs.761 

33. http://compbio.ornl.gov/prodigal/ 

34. http://geneprimp.jgi-psf.org/ 

35. Markowitz VM, Mavromatis K, Ivanova NN, Chen 
IMA, Chu K, Kyrpides NC. IMG ER: A system for 
microbial genome annotation expert review and 
curation. Bioinformatics 2009; 25:2271-2278. 
PubMed doi:10.1093/bioinformatics/btp393  

 

http://standardsingenomics.org/�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15260895&dopt=Abstract�
http://dx.doi.org/10.1093/bib/5.2.150�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7463489&dopt=Abstract�
http://dx.doi.org/10.1007/BF01731581�
http://dx.doi.org/10.2307/2408678�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3447015&dopt=Abstract�
http://dx.doi.org/10.1071/EA03159�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10411257&dopt=Abstract�
http://dx.doi.org/10.1099/13500872-145-6-1307�
http://dx.doi.org/10.1099/13500872-145-6-1307�
http://dx.doi.org/10.4056/sigs.761�
http://compbio.ornl.gov/prodigal/�
http://geneprimp.jgi-psf.org/�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19561336&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19561336&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19561336&dopt=Abstract�
http://dx.doi.org/10.1093/bioinformatics/btp393�

	Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers
	Wayne Reeve1*, Graham O’Hara1, Patrick Chain2,3, Julie Ardley1, Lambert Bräu1, Kemanthi Nandesena1, Ravi Tiwari1, Alex Copeland2, Matt Nolan2, Cliff Han2,4, Thomas Brettin5,  Miriam Land2,5, Galina Ovchinikova2, Natalia Ivanova2, Konstantinos Mavromat...
	1 Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
	2 DOE Joint Genome Institute, Walnut Creek, California, USA
	3 Lawrence Livermore National Laboratory, Livermore, California, USA
	4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
	5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
	6 Biological Data Management and Technology Center, Lawrence Berkeley National  Laboratory, Berkeley, California, USA
	7 Department of Primary Industries, Victoria, Australia
	8 Department of Agriculture and Food, Western Australia, Australia
	Introduction
	Classification and features
	Symbiotaxonomy

	Genome sequencing and annotation
	Genome project history
	Growth conditions and DNA isolation
	Genome sequencing and assembly
	Genome annotation

	Genome properties
	Acknowledgements
	References

