Skip to main content
  • Short genome report
  • Open access
  • Published:

High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Cupriavidus sp. strain UYPR2.512

Abstract

Cupriavidus sp. strain UYPR2.512 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida grown in soils from a native forest of Uruguay. Here we describe the features of Cupriavidus sp. strain UYPR2.512, together with sequence and annotation. The 7,858,949 bp high-quality permanent draft genome is arranged in 365 scaffolds of 369 contigs, contains 7,411 protein-coding genes and 76 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.

Introduction

Legumes establish symbiotic associations with a group of soil bacteria, rhizobia, able to fix atmospheric nitrogen (N2). Rhizobia elicit the formation of a symbiotic organ called a nodule comprising differentiated plant and bacterial cells. Differentiated rhizobia within nodules are termed bacteroids, and acquire the ability to fix nitrogen. Rhizobia are phylogenetically diverse including genera from the Alphaproteobacteria (Allorhizobium, Azorhizobium, Bradyrhizobium, Ensifer, Mesorhizobium, Rhizobium, etc.) as well as from the Betaproteobacteria (Burkholderia, Cupriavidus) [1, 2].

The biological nitrogen fixation process significantly contributes to the development of sustainable agriculture reducing the use of supplies dependent on fuel and alleviating environmental impacts produced by the addition of chemical fertilizer [3]. Moreover, forestation with leguminous trees associated with rhizobia, “nitrogen-fixing trees”, has been successfully used for recovering degraded soils [4].

Parapiptadenia rigida (Benth.) Brenan, is a “nitrogen-fixing tree” belonging to the Piptadenia group from the Mimosoideae subfamily [5]. It is a multipurpose tree, very appreciated because of its timber and therefore used in high quality furniture and construction. It is also used for gums, tannins and essential oil extraction, has medicinal properties and is included in agroforestry and reforestation programs [4, 6, 7]. Taulé et al.[8] demonstrated that this species could be nodulated either by Alpha-rhizobia (Rhizobium) or by Beta-rhizobia (Burkholderia and Cupriavidus) with Burkholderia being the preferred natural symbiont of this legume. In the case of Cupriavidus sp. UYPR2.512, this strain was isolated from a nodule of a P. rigida plant grown in soils collected from Mandiyú native forest in Artigas, Uruguay. Isolated bacterial colonies of Cupriavidus sp. UYPR2.512 were able to nodulate and to promote the growth of P. rigida, as well as Mimosa pudica plants [8].

To our knowledge, the only published sequenced genome of a Beta-rhizobia belonging to the Cupriavidus genus so far is that of C. taiwanensis LMG 19424T[9]. Interestingly, the closest relative of Cupriavidus sp. UYPR2.512 is C. necator ATCC 43291T[8]. Here, we present the description of the Cupriavidus sp. UYPR2.512 high-quality permanent draft genome sequence and its annotation.

Organism information

Classification and features

Cupriavidus sp. strain UYPR2.512 is a motile, Gram-negative, non-spore-forming rod (Figure 1 Left, Center) in the order Burkholderiales of the class Betaproteobacteria. The rod-shaped form varies in size with dimensions of 0.5-0.7 μm in width and 0.9-1.2 μm in length (Figure 1 Left). It is fast growing, forming 0.5-0.8 mm diameter colonies after 24 h when grown on TY [10] at 28°C. Colonies on TY are white-opaque, slightly domed, moderately mucoid with smooth margins (Figure 1 Right).

Figure 1
figure 1

Images of Cupriavidus sp. strain UYPR2.512 using scanning (Left) and transmission (Center) electron microscopy and the appearance of colony morphology on solid media (Right).

Figure 2 shows the phylogenetic relationship of Cupriavidus sp. strain UYPR2.512 in a 16S rRNA gene sequence based tree. This strain is the most similar to Cupriavidus necator ATCC 43291T, Cupriavidus oxalaticus DSM 1105T and Cupriavidus taiwanensis LMG 19424T based on the 16S rRNA gene alignment with sequence identities of 99.32%, 98.49% and 98.42%, respectively, as determined using the EzTaxon-e server [11]. Cupriavidus necator ATCC 43291T has been isolated from soil and is a non-obligate predator causing lysis of various Gram-positive and Gram-negative bacteria in the soil [12]. Cupriavidus taiwanensis LMG 19424T is a plant symbiont and was isolated from root nodules of Mimosa pudica collected from three fields at Ping-Tung Country in the southern part of Taiwan [1]. Minimum Information about the Genome Sequence (MIGS) is provided in Table 1 and Additional file 1: Table S1.

Figure 2
figure 2

Phylogenetic tree highlighting the position of Cupriavidus sp. strain UYPR2.512 (shown in blue print) relative to other type and non-type strains in the Cupriavidus genus using a 1,034 bp internal region of the 16S rRNA gene. Several Alpha-rhizobia sequences were used as an outgroup. All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 5.05 [13]. The tree was built using the maximum likelihood method with the General Time Reversible model. Bootstrap analysis with 500 replicates was performed to assess the support of the clusters. Type strains are indicated with a superscript T. Strains with a genome sequencing project registered in GOLD [14] are shown in bold and have the GOLD ID mentioned after the strain number, otherwise the NCBI accession number has been provided. Finished genomes are designated with an asterisk.

Table 1 Classification and general features of Cupriavidus sp. strain UYPR2.512 in accordance with the MIGS recommendations [15] published by the Genome Standards Consortium [16]

Symbiotaxonomy

Cupriavidus sp. strain UYPR2.512 was isolated from Parapiptadenia rigida, a Mimosoideae legume native to Uruguay [8]. This tree is native to South America, including south Brazil, Argentina, Paraguay, and Uruguay, and used by locals for timber and as a source of gums, tannins and essential oils [8]. Cupriavidus sp. strain UYPR2.512 is able to renodulate its original host and is highly efficient in fixing nitrogen with this host [8]. A selection of other host plants, including Trifolium repens, Medicago sativa, Peltophorum dubium and Mimosa pudica were tested for their ability to nodulate with UYPR2.512. Of these plants, strain UYPR2.512 was only able to nodulate and fix nitrogen effectively with M. pudica[8].

Genome sequencing information

Genome project history

This organism was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the Genomic Encyclopedia of Bacteria and Archaea, The Root Nodulating Bacteria chapter (GEBA-RNB) project at the U.S. Department of Energy, Joint Genome Institute [25]. The genome project is deposited in the Genomes OnLine Database [14] and the high-quality permanent draft genome sequence in IMG [26]. Sequencing, finishing and annotation were performed by the JGI using state of the art sequencing technology [27]. A summary of the project information is shown in Table 2.

Table 2 Genome sequencing project information for Cupriavidus sp. strain UYPR2.512

Growth conditions and DNA isolation

Cupriavidus sp. strain UYPR2.512 was grown to mid logarithmic phase in TY rich media [10] on a gyratory shaker at 28°C. DNA was isolated from 60 mL of cells using a CTAB (Cetyl trimethyl ammonium bromide) bacterial genomic DNA isolation method [29].

Genome sequencing and assembly

The draft genome of Cupriavidus sp. UYPR2.512 was generated at the DOE Joint Genome Institute [27]. An Illumina Std shotgun library was constructed and sequenced using the Illumina HiSeq 2000 platform which generated 29,312,424 reads totaling 4,396.9 Mbp [30]. All general aspects of library construction and sequencing performed at the JGI can be found at the JGI web site [31]. All raw Illumina sequence data was passed through DUK, a filtering program developed at JGI, which removes known Illumina sequencing and library preparation artifacts (Mingkun L, Copeland A, Han J. unpublished). Artifact filtered sequence data was then screened and trimmed according to the k–mers present in the dataset. High–depth k–mers, presumably derived from MDA amplification bias, cause problems in the assembly, especially if the k–mer depth varies in orders of magnitude for different regions of the genome. Reads with high k–mer coverage (>30x average k–mer depth) were normalized to an average depth of 30x. Reads with an average kmer depth of less than 2x were removed. Following steps were then performed for assembly: (1) normalized Illumina reads were assembled using Velvet version 1.1.04 [32] (2) 1–3 Kbp simulated paired end reads were created from Velvet contigs using wgsim [33] (3) normalized Illumina reads were assembled with simulated read pairs using Allpaths–LG (version r41043)[34]. Parameters for assembly steps were: 1) Velvet (velveth: 63 –shortPaired and velvetg: -very clean yes –exportFiltered yes –min contig lgth 500 –scaffolding no –cov cutoff 10) 2) wgsim (-e 0 –1 100 –2 100 –r 0 –R 0 –X 0) 3) Allpaths–LG (PrepareAllpathsInputs: PHRED 64 = 1 PLOIDY = 1 FRAG COVERAGE = 125 JUMP COVERAGE = 25 LONG JUMP COV = 50, RunAllpathsLG: THREADS = 8 RUN = std_shredpairs TARGETS = standard VAPI_WARN_ONLY = True OVERWRITE = True). The final draft assembly contained 369 contigs in 365 scaffolds. The total size of the genome is 7.9 Mbp and the final assembly is based on 839.6 Mbp of Illumina data, which provides an average of 106.8x coverage.

Genome annotation

Genes were identified using Prodigal [35], as part of the DOE-JGI genome annotation pipeline [36, 37] followed by a round of manual curation using GenePRIMP [38] for finished genomes and Draft genomes in fewer than 10 scaffolds. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) non-redundant database, UniProt, TIGRFam, Pfam, KEGG, COG, and InterPro databases. The tRNAScanSE tool [39] was used to find tRNA genes, whereas ribosomal RNA genes were found by searches against models of the ribosomal RNA genes built from SILVA [40]. Other non–coding RNAs such as the RNA components of the protein secretion complex and the RNase P were identified by searching the genome for the corresponding Rfam profiles using INFERNAL [41]. Additional gene prediction analysis and manual functional annotation was performed within the Integrated Microbial Genomes-Expert Review (IMG-ER) system [42] developed by the Joint Genome Institute, Walnut Creek, CA, USA.

Genome properties

The genome is 7,858,949 nucleotides with 65.25% GC content (Table 3) and comprised of 365 scaffolds and 369 contigs (Figure 3). From a total of 7,487 genes, 7,411 were protein encoding and 76 RNA only encoding genes. The majority of genes (75.64%) were assigned a putative function whilst the remaining genes were annotated as hypothetical. The distribution of genes into COG functional categories is presented in Table 4.

Table 3 Genome statistics for Cupriavidus sp. strain UYPR2.512
Figure 3
figure 3

Graphical map of the four largest scaffolds of the genome of Cupriavidus sp. strain UYPR2.512. From the bottom to the top of each scaffold: Genes on forward strand (color by COG categories as denoted by the IMG platform), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC content, GC skew.

Table 4 Number of protein coding genes of Cupriavidus sp. strain UYPR2.512 associated with the general COG functional categories

Conclusion

Cupriavidus sp. UYPR2.512 belongs to a group of Beta-rhizobia isolated from Parapiptadenia rigida, a native tree from Uruguay belonging to the Mimosoideae legume group [8]. This tree is also native to the south of Brazil, Argentina and Paraguay [8]. Greenhouse experiments from previous studies have shown that Cupriavidus sp. UYPR2.512 is also able to nodulate and fix nitrogen with Mimosa pudica, an invasive species in many regions around the world [8]. Phylogenetic analysis revealed that UYPR2.512 is the most closely related to Cupriavidus necator ATCC 43291T, Cupriavidus oxalaticus DSM 1105T and Cupriavidus taiwanensis LMG 19424T . In contrast to the other two strains, Cupriavidus taiwanensis LMG 19424T is a microsymbiont that is able to nodulate and fix nitrogen in association with Mimosa species [43]. In total five Cupriavidus strains (AMP6, LMG 19424T, STM6018, STM6070 and UYPR2.512), which can form a symbiotic association have now been sequenced. A comparison of these strains reveals that UYPR2.512 has the largest genome (7.9 Mbp), with the highest KOG count (1398), the lowest G + C (65.25%) and signal peptide (9.3%) percentages in this group. All of these genomes share the nitrogenase-RXN MetaCyc pathway catalyzed by a multiprotein nitrogenase complex. Out of five Cupriavidus strains (AMP6, LMG 19424T, STM6018, STM6070 and UYPR2.512), which contain the N-fixation pathway, only Cupriavidus sp. UYPR2.512 has been shown to nodulate and fix effectively with Parapiptadenia rigida. The genome attributes of Cupriavidus sp. UYPR2.512 will therefore be important for ongoing molecular analysis of the plant microbe interactions required for the establishment of leguminous tree symbioses with this host.

References

  1. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, et al.: Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001, 51:1729–1735. 10.1099/00207713-51-5-1729

    Article  CAS  PubMed  Google Scholar 

  2. Moulin L, Munive A, Dreyfus B, Boivin-Masson C: Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 2001, 411:948–950. 10.1038/35082070

    Article  CAS  PubMed  Google Scholar 

  3. Crews TE, Peoples MB: Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 2004, 102:279–297. 10.1016/j.agee.2003.09.018

    Article  Google Scholar 

  4. Farias JA, Hoppe JM, Vivian JAC: Comportamento de mudas de Parapiptadenia rigida (Bentham) Brenan, submetidas a diferentes índices de luminosidade e em função de diferentes dimensões de recipientes. Caderno de Pesquisa Série Biologia 2005, 17:69–80.

    Google Scholar 

  5. Jobson RW, Luckow M: Phylogenetic study of the genus Piptadenia (Mimosoideae : Leguminosae) using plastid trnL-F and trnK/matK sequence data. Syst Bot 2007, 32:569–575. 10.1600/036364407782250544

    Article  Google Scholar 

  6. Schmidt CA, Murillo R, Bruhn T, Bringmann G, Goettert M, Heinzmann B, et al.: Catechin derivatives from Parapiptadenia rigida with in vitro wound-healing properties. J Nat Prod 2010, 73:2035–2041. 10.1021/np100523s

    Article  CAS  PubMed  Google Scholar 

  7. de Souza GC, Haas AP, von Poser GL, Schapoval EE, Elisabetsky E: Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J Ethnopharmacol 2004, 90:135–143. 10.1016/j.jep.2003.09.039

    Article  PubMed  Google Scholar 

  8. Taule C, Zabaleta M, Mareque C, Platero R, Sanjurjo L, Sicardi M, et al.: New betaproteobacterial rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl Environ Microbiol 2012, 78:1692–1700. 10.1128/AEM.06215-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, et al.: Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 2008, 18:1472–1483. 10.1101/gr.076448.108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Beringer JE: R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 1974, 84:188–198. 10.1099/00221287-84-1-188

    Article  CAS  PubMed  Google Scholar 

  11. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, et al.: Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012, 62:716–721. 10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  12. Makkar NS, Casida LE: Cupriavidus necator gen. nov., sp. nov. - a nonobligate bacterial predator of bacteria in soil. Int J Syst Evol Microbiol 1987, 37:323–326.

    Google Scholar 

  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731–2739. 10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, et al.: The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2012, 40:D571–579. 10.1093/nar/gkr1100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen M, Angiuoli SV, Ashburner M, Axelrod N, Baldauf S, Ballard S, Boore JL, Cochrane G, Cole J, Dawyndt P, de Vos P, de Pamphilis C, Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Glöckner FO, Goldstein P, Guralnick R, Haft D, Hancock D, et al.: Towards a richer description of our complete collection of genomes and metagenomes "Minimum Information about a Genome Sequence" (MIGS) specification. Nat Biotechnol 2008, 26:541–547. 10.1038/nbt1360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM, et al.: The Genomic Standards Consortium. PLoS Biol 2011, 9:e1001088. 10.1371/journal.pbio.1001088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Woese CR, Kandler O, Wheelis ML: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Nat Acad Sci USA 1990, 87:4576–4579. 10.1073/pnas.87.12.4576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen WX, Wang ET, Kuykendall LD: The Proteobacteria. New York: Springer - Verlag; 2005.

    Google Scholar 

  19. Validation of publication of new names and new combinations previously effectively published outside the IJSEM Int J Syst Evol Microbiol 2005, 55:2235–2238.

  20. Garrity GM, Bell JA, Lilburn TE: Class II. Betaproteobacteria. In Bergey's Manual of Systematic Bacteriology. Volume 2. 2nd edition. Edited by: Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York: Springer - Verlag; 2005.

    Google Scholar 

  21. Garrity GM, Bell JA, Lilburn TE: Order 1. Burkholderiales . In Bergey's Manual of Systematic Bacteriology. Volume 2. 2nd edition. Edited by: Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York: Springer - Verlag; 2005.

    Google Scholar 

  22. Garrity GM, Bell JA, Lilburn TE: Family I. Burkholderiaceae . In Bergey's Manual of Systematic Bacteriology. Volume 2. 2nd edition. Edited by: Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York: Springer - Verlag; 2005.

    Google Scholar 

  23. Balkwill DL: Genus I. Cupriavidus . In Bergey's Manual of Systematic Bacteriology. Volume 2. 2nd edition. Edited by: Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York: Springer - Verlag; 2005.

    Google Scholar 

  24. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25–29. 10.1038/75556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Reeve W, Ardley J, Tian R, Eshragi L, Yoon J, Ngamwisetkun P, et al.: A genomic encyclopedia of the root nodule bacteria: Assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci 2015, 10:14. 10.1186/1944-3277-10-14

    Article  PubMed Central  PubMed  Google Scholar 

  26. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Pillay M, et al.: IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014, 42:D560-D567. 10.1093/nar/gkt963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, et al.: The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. PLoS ONE 2012, 7:e48837. 10.1371/journal.pone.0048837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. GOLD ID Cupriavidus sp. UYPR2.512. [https://gold.jgi-psf.org/projects?id=9663]

  29. CTAB DNA extraction protocol. [http://jgi.doe.gov/collaborate-with-jgi/pmo-overview/protocols-sample-preparation-information/]

  30. Bennett S: Solexa Ltd. Pharmacogenomics 2004, 5:433–438. 10.1517/14622416.5.4.433

    Article  PubMed  Google Scholar 

  31. JGI Website. [http://www.jgi.doe.gov]

  32. Zerbino D, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18:821–829. 10.1101/gr.074492.107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. wgsim. [https://github.com/lh3/wgsim]

  34. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al.: High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Nat Acad Sci 2011, 108:1513–1518. 10.1073/pnas.1017351108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11:119. 10.1186/1471-2105-11-119

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC: The DOE-JGI Standard Operating Procedure for the annotations of microbial genomes. Standards Genomic Sci 2009, 1:63–67. 10.4056/sigs.632

    Article  Google Scholar 

  37. Chen IM, Markowitz VM, Chu K, Anderson I, Mavromatis K, Kyrpides NC, et al.: Improving microbial genome annotations in an integrated database context. PLoS ONE 2013, 8:e54859. 10.1371/journal.pone.0054859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, et al.: GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010, 7:455–457. 10.1038/nmeth.1457

    Article  CAS  PubMed  Google Scholar 

  39. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955–964. 10.1093/nar/25.5.0955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al.: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35:7188–7196. 10.1093/nar/gkm864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. INFERNAL. Inference of RNA alignments. [http://infernal.janelia.org]

  42. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC: IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009, 25:2271–2278. 10.1093/bioinformatics/btp393

    Article  CAS  PubMed  Google Scholar 

  43. Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C: Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 2003, 185:7266–7272. 10.1128/JB.185.24.7266-7272.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Reeve.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EF supplied the strain and background information for this project, PVB supplied DNA to JGI, TR performed all imaging, SDM and WR drafted the paper, JH provided financial support and all other authors were involved in sequencing the genome and editing the final manuscript. All authors read and approved the final manuscript.

Electronic supplementary material

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Meyer, S.E., Fabiano, E., Tian, R. et al. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Cupriavidus sp. strain UYPR2.512. Stand in Genomic Sci 10, 13 (2015). https://doi.org/10.1186/1944-3277-10-13

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1944-3277-10-13

Keywords