Open Access

Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (HT), and emendation of the species Turneriella parva

  • Erko Stackebrandt1,
  • Olga Chertkov2, 3,
  • Alla Lapidus3,
  • Matt Nolan3,
  • Susan Lucas3,
  • Nancy Hammon3,
  • Shweta Deshpande3,
  • Jan-Fang Cheng3,
  • Roxanne Tapia2, 3,
  • Lynne A. Goodwin2, 3,
  • Sam Pitluck3,
  • Konstantinos Liolios3,
  • Ioanna Pagani3,
  • Natalia Ivanova3,
  • Konstantinos Mavromatis3,
  • Natalia Mikhailova3,
  • Marcel Huntemann3,
  • Amrita Pati3,
  • Amy Chen4,
  • Krishna Palaniappan4,
  • Miriam Land3, 5,
  • Chongle Pan3, 5,
  • Manfred Rohde6,
  • Sabine Gronow1,
  • Markus Göker1,
  • John C. Detter2,
  • James Bristow3,
  • Jonathan A. Eisen3, 7,
  • Victor Markowitz4,
  • Philip Hugenholtz3, 8,
  • Tanja Woyke3,
  • Nikos C. Kyrpides3 and
  • Hans-Peter Klenk1
Standards in Genomic Sciences20138:8020228

https://doi.org/10.4056/sigs.3617113

Published: 15 June 2013

Abstract

Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was established as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spirochete together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Turneriella and the 13th member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

Keywords

Gram-negative motile axial filaments helical flexible non-sporulating aerobic mesophile Leptospiraceae GEBA

Introduction

Strain HT (= DSM 21527 = NCTC 11395 = ATCC BAA-1111) is the type strain of Turneriella parva [1]. The strain was isolated from contaminated Leptospira culture medium [2] and was originally thought to be affiliated with Leptospira [2] because of morphological similarities to other members of the genus. Strain HT was designated as a separate species because of certain morphological and molecular differences: cells were shorter and were more tightly wound, the surface layer formed blebs instead of cross-striated tubules when detached for negative staining preparation and the base composition of DNA differed from that of other Leptospira species [2]. DNA-DNA hybridization [3] and enzyme activity [4] studies revealed sufficient differences between other Leptospira species and L. parva that the ‘Subcommittee on the Taxonomy of Leptospira’ [5] decided to exclude L. parva from the genus Leptospira and assign it as the type strain of a new genus: ‘Turneria’ as ‘Turneria parva’. The genus was named in honor of Leslie Turner, an English microbiologist who made definitive contributions to the knowledge of leptospirosis [1]. However, as the generic name is also in use in botany and zoology, this name was rendered illegitimate and invalidate, but was used in the literature [6,7]. The first 16S rRNA gene-based study (Genbank accession number Z21636), performed on Leptospira parva incertae sedis, confirmed the isolated position of L. parva among Leptonema and Leptospira species [8], a finding later supported by Morey et al. [9]. The reclassification of L. parva as Turneriella parva com. nov. was published by Levett et al. [1], reconfirming the separate position of the type strain [10] and an additional strain (S-308-81, ATCC BAA-1112) from the uterus of a sow from all other leptospiras on the basis of DNA-DNA hybridization and 16S rRNA gene sequence analysis (Genbank accession number AY293856). The strain was selected for genome sequencing because of its deep branching point within the Leptospiraceae lineage.

Here we present a summary classification and a set of features for T. parva HT together with the description of the complete genomic sequencing and annotation.

Classification and features

16S rRNA gene sequence analysis

A representative genomic 16S rDNA sequence of T. parva HT was compared using NCBI BLAST [11,12] under default settings (e.g., considering only the high-scoring segment pairs (HSPs) from the best 250 hits) with the most recent release of the Greengenes database [13] and the relative frequencies of taxa and keywords (reduced to their stem [14]) were determined, weighted by BLAST scores. The most frequently occurring genera were Geobacter (48.7%), Leptospira (19.2%), Pelobacter (13.4%), Spirochaeta (8.1%) and Turneriella (6.4%) (56 hits in total). Regarding the single hit to sequences from members of the species, the average identity within HSPs was 95.8%, whereas the average coverage by HSPs was 89.8%. Among all other species, the one yielding the highest score was Leptonema illini (AY714984), which corresponded to an identity of 85.7% and an HSP coverage of 62.6%. (Note that the Greengenes database uses the INSDC (= EMBL/NCBI/DDBJ) annotation, which is not an authoritative source for nomenclature or classification.) The highest-scoring environmental sequence was DQ017943 (Greengenes short name ‘Cntrl Erpn Rnnng Wtrs Exmnd TGGE and uplnd strm cln S-BQ2 83’), which showed an identity of 95.6% and an HSP coverage of 97.8%. The most frequently occurring keywords within the labels of all environmental samples which yielded hits were ‘microbi’ (5.5%), ‘sediment’ (2.6%), ‘soil’ (2.5%), ‘industri’ (2.1%) and ‘anaerob’ (1.9%) (194 hits in total). Environmental samples which yielded hits of a higher score than the highest scoring species were not found.

Figure 1 shows the phylogenetic neighborhood of T. parva HT in a 16S rRNA based tree. The sequences of the two identical 16S rRNA gene copies in the genome do not differ from the previously published 16S rRNA sequence (AY293856).
Figure 1.

Phylogenetic tree highlighting the position of T. parva relative to the type strains of the other species within the phylum ‘Spirochaetes’. The tree was inferred from 1,318 aligned characters [15,16] of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion [17]. Rooting was done initially using the midpoint method [18] and then checked for its agreement with the current classification (Table 1). The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches are support values from 500 ML bootstrap replicates [19] (left) and from 1,000 maximum-parsimony bootstrap replicates [20] (right) if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [21] are labeled with one asterisk, those also listed as ‘Complete and Published’ with two asterisks [2228]; for Sphaerochaeta pleomorpha see CP003155. The collapsed Treponema subtree contains three species formerly assigned to Spirochaeta that have recently been included in the genus Treponema, even though those names are not yet validly published [27].

Morphology and physiology

Cells of strain HT are Gram-negative, flexible and helical with 0.3 µm in diameter and 3.5–7.5 µm in length and a wavelength of 0.3–0.5 µm (Figure 2). Motility is achieved by means of two axial filaments, similar to those of other leptospiras. The surface of the cells show several blebs with no apparent substructure when prepared for negative staining while under the same conditions, cross-striated tubules are visible in other leptospiras [1,2]. The strain is obligately aerobic and oxidase positive. Slow and limited growth occurs in polysorbate albumin medium [39] at 11, 30 and 37 °C. Growth is inhibited by 8-azaguanine (200 µg ml-1) and 2,6 diaminopurine (µg ml-1). Lipase is produced, long-chain fatty acids and long-chain fatty alcohols are utilized as carbon and energy sources. L-lysine arylamidase, α-L-glutamate arylamidase, glycine arylamidase, leucyl-glycine arylamidase and α-D-galactosidase activities are lacking [4]. The type strain is not pathogenic for hamsters [1].
Figure 2.

Scanning electron micrograph of T. parva HT

Chemotaxonomy

Information on peptidoglycan composition, major cell wall sugars, fatty acids, menaquinones and polar lipids is not available. The mol% G+C of DNA was originally reported to be approximately 48% [3], significantly less than the G+C content inferred from the genome sequence.

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [40], and is part of the Genomic Encyclopedia of Bacteria and Archaea project [41]. The genome project is deposited in the Genomes On Line Database [21] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI) using state of the art sequencing technology [42]. A summary of the project information is shown in Table 2.
Table 1.

Classification and general features of T. parva HT according to the MIGS recommendations [29].

MIGS ID

Property

Term

Evidence code

 

Current classification

Domain Bacteria

TAS [30]

 

Phylum Spirochaetes

TAS [31]

 

Class Spirochaetes

TAS [32,33]

 

Order Spirochaetales

TAS [34,35]

 

Family Leptospiraceae

TAS [1,35,36]

 

Genus Turneriella

TAS [1]

 

Species

Turneriella parva

TAS [1]

MIGS-7

Subspecific genetic lineage (strain)

Turneriella parva HT

TAS [1]

MIGS-12

 

Levett et al. 2005

TAS [1]

 

Gram stain

negative

TAS [1]

 

Cell shape

spiral-shaped

TAS [1]

 

Motility

motile

TAS [1]

 

Sporulation

non-sporulating

 
 

Temperature range

mesophile

TAS [1]

 

Optimum temperature

grows between 11 and 37°C

TAS [1]

 

Salinity

not reported

 

MIGS-22

Relationship to oxygen

aerobe

TAS [1]

 

Carbon source

long-chain fatty acids and long-chain alcohols

TAS [4]

 

Energy metabolism

chemoheterotrophic

TAS [4]

MIGS-6

Habitat

not reported

 

MIGS-6.2

pH

not reported

 

MIGS-15

Biotic relationship

free living

TAS [1]

MIGS-14

Known pathogenicity

not reported

 

MIGS-16

Specific host

not reported

 

MIGS-18

Health status of host

unknown

 
 

Biosafety level

1

TAS [37]

MIGS-19

Trophic level

unknown

 

MIGS-23.1

Isolation

contaminated culture medium

TAS [1]

MIGS-4

Geographic location

Regina, Saskatchewan, Canada

TAS [1]

MIGS-5

Time of sample collection

1981

TAS [1]

MIGS-4.1

Latitude

50.45

TAS [1]

MIGS-4.2

Longitude

−104.61

TAS [11]

MIGS-4.3

Depth

  

MIGS-4.4

Altitude

  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [38].

Table 2.

Genome sequencing project information

MIGS ID

Property

Term

MIGS-31

Finishing quality

Finished

MIGS-28

Libraries used

Five genomic libraries: 454 standard library, 454 PE libraries (3 kb, 4kb and 11 kb insert size), one Illumina library

MIGS-29

Sequencing platforms

Illumina GAii, 454 GS FLX Titanium

MIGS-31.2

Sequencing coverage

1,675.1 × Illumina; 47.0 × pyrosequence

MIGS-30

Assemblers

Newbler version 2.3-PreRelease-6/30/2009, Velvet 1.0.13, phrap version SPS - 4.24

MIGS-32

Gene calling method

Prodigal 1.4, GenePRIMP

 

INSDC ID

CP002959 (chromosome)

  

CP002960 (plasmid)

 

GenBank Date of Release

June 12, 2012

 

GOLD ID

Gc02242

 

NCBI project ID

50821

 

Database: IMG

2506520013

MIGS-13

Source material identifier

DSM 21527

 

Project relevance

Tree of Life, GEBA

Growth conditions and DNA isolation

T. parva strain HT, DSM 21527, was grown in semisolid DSMZ medium 1113 (Leptospira medium) [43] at 30°C. DNA was isolated from 1–1.5 g of cell paste using MasterPure Gram-positive DNA purification kit (Epicentre MGP04100) following the standard protocol as recommended by the manufacturer with modification st/DL for cell lysis as described in Wu et al. 2009 [41]. DNA is available through the DNA Bank Network [44].

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [45]. Pyrosequencing reads were assembled using the Newbler assembler (Roche). The initial Newbler assembly consisting of 217 contigs in 1 scaffold was converted into a phrap [46] assembly by making fake reads from the consensus, to collect the read pairs in the 454 paired end library. Illumina GAii sequencing data (8,018.4 Mb) was assembled with Velvet [47] and the consensus sequences were shredded into 1.5 kb overlapped fake reads (shreds) and assembled together with the 454 data. The 454 draft assembly was based on 200.6 Mb 454 draft data and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 21. The Phred/Phrap/Consed software package [46] was used for sequence assembly and quality assessment in the subsequent finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution [45], Dupfinisher [48], or sequencing cloned bridging PCR fragments with subcloning. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F. Chang, unpublished). A total of 361 additional reactions and 11 shatter library were necessary to close some gaps and to raise the quality of the final contigs. Illumina reads were also used to correct potential base errors and increase consensus quality using a software Polisher developed at JGI [49]. The error rate of the final genome sequence is less than 1 in 100,000. Together, the combination of the Illumina and 454 sequencing platforms provided 1,722.1 × coverage of the genome. The final assembly contained 348,698 pyrosequence and 97,925,368 Illumina reads.

Genome annotation

Genes were identified using Prodigal [50] as part of the DOE-JGI annotation pipeline [51], followed by a round of manual curation using the JGI GenePRIMP pipeline [52]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [53].

Genome properties

The genome statistics are provided in Table 3 and Figure 3. The genome in its current assembly consists of two linear scaffolds with a total length of 4,384,015 bp and 25,287 bp, respectively, and a G+C content of 53.6%. Of the 4,214 genes predicted, 4,169 were protein-coding genes, and 45 RNAs; 30 pseudogenes were also identified. The majority of the protein-coding genes (57.9%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
Figure 3.

Graphical map of the largest scaffold (smaller scaffold not shown). From bottom to the top: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew (purple/olive).

Table 3.

Genome Statistics

Attribute

Value

% of Total

Genome size (bp)

4,409,302

100.00

DNA coding region (bp)

4,062,544

92.14

DNA G+C content (bp)

2,364,784

53.63

Number of scaffolds

2

 

Extrachromosomal elements

0

 

Total genes

4,214

100.00

RNA genes

45

1.07

rRNA operons

2

 

tRNA genes

38

0.90

Protein-coding genes

4,169

98.93

Pseudo genes

30

0.71

Genes with function prediction

2,446

58.04

Genes in paralog clusters

1,807

42.88

Genes assigned to COGs

2,698

64.02

Genes assigned Pfam domains

2,897

68.75

Genes with signal peptides

508

12.06

Genes with transmembrane helices

1,034

24.54

CRISPR repeats

0

 
Table 4.

Number of genes associated with the general COG functional categories

Code

Value

% age

Description

J

164

5.5

Translation, ribosomal structure and biogenesis

A

0

0.0

RNA processing and modification

K

169

5.7

Transcription

L

158

5.3

Replication, recombination and repair

B

2

0.1

Chromatin structure and dynamics

D

34

1.2

Cell cycle control, cell division, chromosome partitioning

Y

0

0.0

Nuclear structure

V

49

1.7

Defense mechanisms

T

266

9.0

Signal transduction mechanisms

M

222

7.5

Cell wall/membrane/envelope biogenesis

N

80

2.7

Cell motility

Z

0

0.0

Cytoskeleton

W

0

0.0

Extracellular structures

U

70

2.4

Intracellular trafficking, secretion, and vesicular transport

O

114

3.9

Posttranslational modification, protein turnover, chaperones

C

158

5.3

Energy production and conversion

G

123

4.2

Carbohydrate transport and metabolism

E

154

5.2

Amino acid transport and metabolism

F

73

2.5

Nucleotide transport and metabolism

H

117

4.0

Coenzyme transport and metabolism

I

146

4.9

Lipid transport and metabolism

P

121

4.1

Inorganic ion transport and metabolism

Q

55

1.9

Secondary metabolites biosynthesis, transport and catabolism

R

405

13.7

General function prediction only

S

279

9.4

Function unknown

-

1,516

36.0

Not in COGs

Emended description of the species Turneriella parva Levett et al. 2005

The description of the species Turneriella parva is the one given by Levett et al. 2005 [1], with the following modification: DNA G+C content is 53.6 mol%.

Declarations

Acknowledgements

We would like to gratefully acknowledge the help of Sabine Welnitz for growing T. parva cultures, and Evelyne-Marie Brambilla for DNA extraction and quality control (both at DSMZ). This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725.

Authors’ Affiliations

(1)
Leibniz-Institute, DSMZ - German Collection of Microorganisms and Cell Cultures
(2)
Bioscience Division, Los Alamos National Laboratory
(3)
DOE Joint Genome Institute
(4)
Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory
(5)
Oak Ridge National Laboratory
(6)
HZI - Helmholtz Centre for Infection Research
(7)
University of California Davis Genome Center
(8)
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland

References

  1. Levett PN, Morey RE, Galloway R, Steigerwalt AG, Ellis WA. Reclassification of Leptospira parva Hovind-Hougen et al. 1982 as Turneriella parva gen. nov., comb. nov. Int J Syst Evol Microbiol 2005; 55:1497–1499. PubMed http://dx.doi.org/10.1099/ijs.0.63088-0View ArticlePubMedGoogle Scholar
  2. Hovind-Hougen K, Ellis WA, Birch-Andersen A. Leptospira parva sp.nov.: some morphological and biological characters. Zentralbl Bakteriol Mikrobiol Hyg [A] 1981; 250:343–354. PubMedGoogle Scholar
  3. Yasuda PH, Steigerwalt AG, Sulzer KR, Kaufmann AF, Rogers F, Brenner DJ. Deoxyribonucleic acid relatedness between serogroups and serovars in the family Leptospiraceae with proposals for seven new Leptospira species. Int J Syst Bacteriol 1987; 37:407–415. http://dx.doi.org/10.1099/00207713-37-4-407View ArticleGoogle Scholar
  4. Saito T, Ono E, Yanagawa R. Enzyme activities of the strains belonging to the family Leptospiraceae detected by the API ZYM system. Zentralbl Bakteriol Mikrobiol Hyg [A] 1987; 266:218–225. PubMedGoogle Scholar
  5. Marshall R. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Leptospira. Minutes of the meetings, 13 and 15 September 1990, Osaka, Japan. Int J Syst Bacteriol 1992; 42:330–334. http://dx.doi.org/10.1099/00207713-42-2-330View ArticleGoogle Scholar
  6. Perolat P, Chappel RJ, Adler B, Baranton G, Bulach DM, Billinghurst ML, Letocart M, Merien F, Serrano MS. Leptospira fainei sp. nov., isolated from pigs in Australia. Int J Syst Bacteriol 1998; 48:851–858. PubMed http://dx.doi.org/10.1099/00207713-48-3-851View ArticlePubMedGoogle Scholar
  7. Levett PN. Leptospirosis. Clin Microbiol Rev 2001; 14:296–326. PubMed http://dx.doi.org/10.1128/CMR.14.2.296-326.2001PubMed CentralView ArticlePubMedGoogle Scholar
  8. Hookey JV, Bryden J, Gatehouse L. The use of 16S rDNA sequence analysis to investigate the phylogeny of Leptospiraceae and related spirochaetes. J Gen Microbiol 1993; 139:2585–2590. PubMed http://dx.doi.org/10.1099/00221287-139-11-2585View ArticlePubMedGoogle Scholar
  9. Morey RE, Galloway RL, Bragg SL, Steigerwalt AG, Mayer LW, Levett PN. Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. Can J Clin Microbiol 2006; 44:3510–3516. PubMed http://dx.doi.org/10.1128/JCM.00670-06View ArticlePubMedGoogle Scholar
  10. Hookey JV. Characterization of Leptospiraceae by 16S DNA restriction fragment length polymorphisms. J Gen Microbiol 1993; 139:1681–1689. PubMed http://dx.doi.org/10.1099/00221287-139-8-1681View ArticlePubMedGoogle Scholar
  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410. PubMedView ArticlePubMedGoogle Scholar
  12. Korf I, Yandell M, Bedell J. BLAST, O’Reilly, Sebastopol, 2003.Google Scholar
  13. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006; 72:5069–5072. PubMed http://dx.doi.org/10.1128/AEM.03006-05PubMed CentralView ArticlePubMedGoogle Scholar
  14. Porter MF. An algorithm for suffix stripping. Program: electronic library and information systems 1980; 14:130–137.View ArticleGoogle Scholar
  15. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452–464. PubMed http://dx.doi.org/10.1093/bioinformatics/18.3.452View ArticlePubMedGoogle Scholar
  16. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552. PubMed http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334View ArticlePubMedGoogle Scholar
  17. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 2008; 57:758–771. PubMed http://dx.doi.org/10.1080/10635150802429642View ArticlePubMedGoogle Scholar
  18. Hess PN, De Moraes Russo CA. An empirical test of the midpoint rooting method. Biol J Linn Soc Lond 2007; 92:669–674. http://dx.doi.org/10.1111/J.1095-8312.2007.00864.xView ArticleGoogle Scholar
  19. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci 2009; 5541:184–200. http://dx.doi.org/10.1007/978-3-642-02008-7 13View ArticleGoogle Scholar
  20. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 b10. Sinauer Associates, Sunderland, 2002.Google Scholar
  21. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2012; 40:D571–D579. PubMed http://dx.doi.org/10.1093/nar/gkr1100PubMed CentralView ArticlePubMedGoogle Scholar
  22. Abt B, Han C, Scheuner C, Lu M, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, et al. Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. Stand Genomic Sci 2012; 6:194–209. PubMed http://dx.doi.org/10.4056/sigs.2796069PubMed CentralView ArticlePubMedGoogle Scholar
  23. Han C, Gronow S, Teshima H, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Zeytun A, et al. Complete genome sequence of Treponema succinifaciens type strain (6091T). Stand Genomic Sci 2011; 4:361–370. PubMed http://dx.doi.org/10.4056/sigs.1984594PubMed CentralView ArticlePubMedGoogle Scholar
  24. Mavromatis K, Yasawong M, Chertkov O, Lapidus A, Lucas S, Nolan M, Glavina del Rio T, Tice H, Cheng JF, Pitluck S, et al. Complete genome sequence of Spirochaeta smaragdinae type strain (SEBR 4228T). Stand Genomic Sci 2010; 3:136–144. PubMedPubMed CentralPubMedGoogle Scholar
  25. Pati A, Sikorski J, Gronow S, Lapidus A, Copeland A, Glavina del Rio T, Nolan M, Lucas S, Chen F, Tice H, et al. Complete genome sequence of Brachyspira murdochii type strain (56-150T). Stand Genomic Sci 2010; 2:260–269. PubMed http://dx.doi.org/10.4056/sigs.831993PubMed CentralView ArticlePubMedGoogle Scholar
  26. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton RA, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997; 390:580–586. PubMed http://dx.doi.org/10.1038/37551View ArticlePubMedGoogle Scholar
  27. Abt B, Göker MG, Scheuner C, Han C, Lu M, Misra M, Lapidus A, Nolan M, Lucas S, Hammon N, et al. Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria and Spirochaeta stenostrepta in the genus Treponema as Treponema caldaria comb. nov. and Treponema stenostrepta comb. nov., revival of the name Treponema zuelzerae comb. nov., and emendation of the genus Treponema. Stand Genomic Sci 2013; 8:88–105. http://dx.doi.org/10.4056/sigs.3096473PubMed CentralView ArticlePubMedGoogle Scholar
  28. Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, Wilson PJ, Creno S, Kuczek ES, Bommezzadri S, Davis JC, et al. Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 2009; 13:e1607.Google Scholar
  29. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541–547. PubMed http://dx.doi.org/10.1038/nbt1360PubMed CentralView ArticlePubMedGoogle Scholar
  30. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576PubMed CentralView ArticlePubMedGoogle Scholar
  31. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119–169.View ArticleGoogle Scholar
  32. Ludwig W, Euzeby J, Whitman WG. Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi, and Gemmatimonadetes. http://www.bergeys.org/outlines/Bergeys_Vol_4_Outline.pdf. Taxonomic Outline 2008
  33. Judicial Commission of the International Committee on Systematics of Prokaryotes. The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobium, respectively. Opinion 79. Int J Syst Evol Microbiol 2005; 55:517–518. PubMed http://dx.doi.org/10.1099/ijs.0.63548-0View ArticleGoogle Scholar
  34. Buchanan RE. Studies in the nomenclature and classification of bacteria. II. The primary subdivisions of the Schizomycetes. J Bacteriol 1917; 2:155–164. PubMedPubMed CentralPubMedGoogle Scholar
  35. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225–420. http://dx.doi.org/10.1099/00207713-30-1-225View ArticleGoogle Scholar
  36. Hovind-Hougen K. Leptospiraceae, a new family to include Leptospira Noguchi 1917 and Leptonema gen. nov. Int J Syst Bacteriol 1979; 29:245–251. http://dx.doi.org/10.1099/00207713-29-3-245View ArticleGoogle Scholar
  37. BAuA. 2010, Classification of bacteria and archaea in risk groups. http://www.baua.de TRBA 466, p. 243.
  38. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29. PubMed http://dx.doi.org/10.1038/75556PubMed CentralView ArticlePubMedGoogle Scholar
  39. Sulzer CR, Jones WL. Leptospirosis, methods in laboratory diagnosis, revised ed. Centers for Disease Control publication 80-8275. 1980; Centers for Disease Control, Atlanta.Google Scholar
  40. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 2010; 33:175–182. PubMed http://dx.doi.org/10.1016/j.syapm.2010.03.003View ArticlePubMedGoogle Scholar
  41. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 2009; 462:1056–1060. PubMed http://dx.doi.org/10.1038/nature08656PubMed CentralView ArticlePubMedGoogle Scholar
  42. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, Goodwin L, Woyke T, Lapidus A, Klenk HP, et al. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. PLoS ONE 2012; 7:e48837. PubMed http://dx.doi.org/10.1371/journal.pone.0048837PubMed CentralView ArticlePubMedGoogle Scholar
  43. List of growth media used at DSMZ: http://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html.
  44. Gemeinholzer B, Dröge G, Zetzsche H, Haszprunar G, Klenk HP, Güntsch A, Berendsohn WG, Wägele JW. The DNA Bank Network: the start from a German initiative. Biopreserv Biobank 2011; 9:51–55. http://dx.doi.org/10.1089/bio.2010.0029View ArticlePubMedGoogle Scholar
  45. JGI website. http://www.jgi.doe.gov/
  46. The Phred/Phrap/Consed software package. http://www.phrap.com
  47. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829. PubMed http://dx.doi.org/10.1101/gr.074492.107PubMed CentralView ArticlePubMedGoogle Scholar
  48. Han C, Chain P. Finishing repeat regions automatically with Dupfinisher. In: Proceeding of the 2006 international conference on bioinformatics & computational biology. Arabnia HR, Valafar H (eds), CSREA Press. June 26–29, 2006:141–146.Google Scholar
  49. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.Google Scholar
  50. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed http://dx.doi.org/10.1186/1471-2105-11-119PubMed CentralView ArticlePubMedGoogle Scholar
  51. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI Standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 2009; 1:63–67. PubMed http://dx.doi.org/10.4056/sigs.632PubMed CentralView ArticlePubMedGoogle Scholar
  52. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455–457. PubMed http://dx.doi.org/10.1038/nmeth.1457View ArticlePubMedGoogle Scholar
  53. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271–2278. PubMed http://dx.doi.org/10.1093/bioinformatics/btp393View ArticlePubMedGoogle Scholar

Copyright

© The Author(s) 2013