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Abstract 

Background ‘Omics methods have empowered scientists to tackle the complexity of microbial communities 
on a scale not attainable before. Individually, omics analyses can provide great insight; while combined as “meta-
omics”, they enhance the understanding of which organisms occupy specific metabolic niches, how they interact, 
and how they utilize environmental nutrients. Here we present three integrative meta-omics workflows, developed 
in Galaxy, for enhanced analysis and integration of metagenomics, metatranscriptomics, and metaproteomics, com-
bined with our newly developed web-application, ViMO (Visualizer for Meta-Omics) to analyse metabolisms in com-
plex microbial communities.

Results In this study, we applied the workflows on a highly efficient cellulose-degrading minimal consortium 
enriched from a biogas reactor to analyse the key roles of uncultured microorganisms in complex biomass degrada-
tion processes. Metagenomic analysis recovered metagenome-assembled genomes (MAGs) for several constitu-
ent populations including Hungateiclostridium thermocellum, Thermoclostridium stercorarium and multiple het-
erogenic strains affiliated to Coprothermobacter proteolyticus. The metagenomics workflow was developed as two 
modules, one standard, and one optimized for improving the MAG quality in complex samples by implementing 
a combination of single- and co-assembly, and dereplication after binning. The exploration of the active pathways 
within the recovered MAGs can be visualized in ViMO, which also provides an overview of the MAG taxonomy 
and quality (contamination and completeness), and information about carbohydrate-active enzymes (CAZymes), 
as well as KEGG annotations and pathways, with counts and abundances at both mRNA and protein level. To achieve 
this, the metatranscriptomic reads and metaproteomic mass-spectrometry spectra are mapped onto predicted genes 
from the metagenome to analyse the functional potential of MAGs, as well as the actual expressed proteins and func-
tions of the microbiome, all visualized in ViMO.

Conclusion Our three workflows for integrative meta-omics in combination with ViMO presents a progression 
in the analysis of ‘omics data, particularly within Galaxy, but also beyond. The optimized metagenomics workflow 
allows for detailed reconstruction of microbial community consisting of MAGs with high quality, and thus improves 
analyses of the metabolism of the microbiome, using the metatranscriptomics and metaproteomics workflows.
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Introduction
Microbial communities have a tremendous impact on 
Earth’s ecosystems. An example is the marine micro-
biome, which is responsible for > 50% of the produced 
oxygen on the planet [1]. The microorganisms histori-
cally promoted the adjustment from freshwater to the 
terrestrial environment for plants [2] and bacteria still 
today regulate the growth and development of the ter-
restrial flora by symbiosis, for example promoting growth 
by nitrogen fixation or plant hormone production [3]—
dynamic and highly adaptable processes that are influen-
tial to microbial communities and their hosts alike [4, 5]. 
Similarly, in humans, microbial communities may affect 
the toxicity of drugs, modulate disease progression, and 
promote health. It is of great importance to increase our 
understanding of such microbiomes, their composition 
and interplay, as well as factors for perturbation, stabil-
ity, and development [6, 7]. Ideally, such understanding 
may spark the development of new personalized medi-
cal treatments for improving life quality and addressing 
the climate crisis, specifically by curbing the emissions of 
methane from wetlands or ruminating animals [8, 9] and 
nitrous oxide from agriculture [9, 10].

Meta-omics technologies, alongside environmen-
tal measurements, allow researchers to infer the com-
plex network of a microbiome and its relations with 
the environment and host, offering a putative picture 
of their metabolism in their natural habitat [11, 12]. 
With metagenomics, we analyse the total DNA of the 
microbial community using shotgun sequencing [11, 
13, 14], and this technology provides information about 
the potential physiological function and regulation of 
the genes in microbial communities [11, 15, 16]. Mod-
ern tools for read assembly allow for the retrieval of 
both known and novel organisms by overcoming chal-
lenges such as size and complexity of metagenomic 
data, as well as difficulties in accuracy and contiguity 
of metagenome assemblies [17]. This have resulted in 
larger and less fragmented assemblies and hence better 
quality of metagenome-assembled genomes (MAGs) 
[18]. Remarkably, in some samples, species-resolution 
can be achieved during the binning process, allow-
ing for reconstruction of metabolic pathways for indi-
vidual MAGs [19]. Further, metatranscriptomics aims 
to analyse the entire set of active gene transcripts in 
the microbial community as well as calculate their 
(relative) abundances and thus capture perturbation, 
environmental changes, and dynamics [14, 16]. Using 
high-throughput sequencing, transcripts of micro-
organisms are detected, and either analysed on their 
own, or preferably, mapped to the metagenomics data, 
including MAGs, which enables the identification 
and quantification of active metabolic pathways [14]. 

Further evidence is provided by metaproteomics, which 
identifies and quantifies of the entire set of proteins 
in the microbial community, both intra- and extra-
cellular [11, 16]. Metaproteomics in combination with 
metagenomics allows both for targeted identification of 
sample-specific microorganisms, and also for the iden-
tification of proteins not present in publicly available 
sequence repositories such as UniProt or RefSeq. This 
in turn might enhance our understanding of known 
signalling pathways or possibly act in the discovery 
of new metabolic pathways [20], as well as detect the 
presence of active novel microbial members within the 
community.

Due to a rapid improvement of algorithms within the 
meta-omics field, analysing meta-omics data requires a 
constant update and evaluation of computational tools. 
Currently, hundreds of tools are available for the analysis 
of meta-omics data, and it can be challenging to select the 
right tool and parameters for a given dataset. Meanwhile, 
the popularity of user-friendly interfaces attached to 
compute resources with pre-installed software packages, 
like Anvi’o [21] for metagenomics and metatranscriptom-
ics, iMetalab [22] for metaproteomics, and Galaxy for 
multi-omics [23, 24], are on the rise, particularly because 
they enable advanced bioinformatic analysis without the 
need for programming/scripting. In the Galaxy platform, 
various tools can be chained together in a sequential 
manner into a workflow and shared between developers 
and users for further data-based optimization and repro-
ducibility [25]. A common workflow for metagenomics 
within Galaxy is ASaiM [26] with taxonomic and func-
tional analysis of metagenomics shotgun data, which was 
further extended to include metatranscriptomics analysis 
in the ASaiM-MT workflow [27]. However, while ASaiM 
and ASaiM-MT offer in-depth microbial analysis, it cur-
rently does not support the analysis of MAGs or the full 
integration between the different omics disciplines.

In this study, we applied commonly used omics tools 
within the Galaxy framework to generate workflows for 
metagenomics (MetaG), metatranscriptomics (MetaT), 
and metaproteomics (MetaP). We made the workflows 
integrative, so that MAGs recovered in the MetaG work-
flow makes the reference for mapping both transcrip-
tomic reads and proteomic mass spectra. The workflows 
were applied on a highly efficient cellulose-degrading 
minimal consortium enriched from an industrial biogas 
reactor in Fredrikstad, Norway to analyse the key roles of 
uncultured microorganisms in complex biomass degra-
dation processes [28]. To enhance the multi-levelled data 
interpretation and exploration, we developed an interac-
tive R-Shiny-based web-application, ViMO (Visualizer 
for Meta-Omics), where the data can be explored in more 
detail.
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Methods
Samples
The microbial community called SEM1b studied/uti-
lized in this work was enriched from a thermophilic 
biogas reactor operated on municipal food waste (Fre-
var) and manure in Fredrikstad, Norway, and has previ-
ously been described in detail, including metagenomics, 
metatrascriptomics and metaproteomics analysis across 
nine time points spanning over 43 h post inoculation [28, 
29]. In brief, using an inoculate from a lab-scale reactor, 
we performed a serial dilution to extinction experiment 
to simplify and enrich the community for growth on 
Norwegian Spruce as carbon source at 65  °C. DNA was 
collected by Phenol–Chloroform extraction of 6 mL sam-
ple and a library was prepared with the TrueSeq DNA 
PCRfree-protocol prior to  sequencing on an Illumina 
HiSeq3000 platform (Illumina Inc) with paired-ends 
(2 × 125 bp)       [28, 29]. For metatranscriptomics analy-
sis, mRNA was extracted in triplicates (A, B, and C) with 
the RNeasy mini kit (Protocol2, Qiagen, USA) followed 
by DNA and small RNAs removal (such as tRNA) with 
lithium chloride precipitation solution (ThermoFisher 
Scientific) according to manufacturer’s recommenda-
tion. The enriched mRNA was amplified with the Mes-
sageAMP II-Bacteria Kit (Applied Biosystems, USA) 
and sequenced on an Illumina HiSeq3000 platform with 
paired-ends (2 × 125 bp). Proteins were extracted chemi-
cally and mechanically using FastPrep24 in triplicates and 
subsequently reduced, alkylated and in-gel digested with 
trypsin. The mass spectrometry analysis of the peptides 
was performed using nanoLC-MS/MS system consisting 
of a Dionex Ultimate 3000 UHPLC (ThermoScientific, 
Germany) connected to a Q-Exactive hybrid quadrupole-
orbitrap mass spectrometer (ThermoScientific, Ger-
many). For this study, we used the metagenomics data 
from the abovementioned SEM1b community, as well as 
a subset of the metatranscriptomics and metaproteomics 
data, including triplicates from three time points (13, 23, 
38 h) after inoculation [28, 29].

Implementation, results and discussion
In this study we used common tools already present 
within the Galaxy ToolShed (https:// tools hed. g2. bx. psu. 
edu/), as well as incorporated additional tools (dRep, 
CheckM, CoverM, BAT/CAT) to facilitate multi-omics 
analysis of microbiomes at a level not possible in Galaxy 
previously. The newly implemented dRep selects MAGs 
with the best quality in the genome set improving the 
pathway analysis of each MAG with functional annota-
tion tools and the recently added KOFamScan annota-
tions. The quality for these MAGs in the workflow can be 
assessed with CheckM and their genome mapped back 
to the metagenome raw files using CoverM. Tools for 

meta-omics were then chained to generate three separate 
workflows for (1) metagenomic assembly, binning, and 
functional annotation (MetaG), (2) metatranscriptom-
ics (MetaT), and (3) metaproteomics (MetaP). Although 
separate, the workflows are designed to be integrative so 
that the MAGs recovered from MetaG make the founda-
tion for mapping both the transcriptomic reads and the 
proteomic spectra onto their predicted genes. The tools 
included in the three pipelines are listed in Table 1.

Workflow for metagenomics and functional annotation 
(MetaG)
The MetaG workflow provides all the processing steps 
and parameters to analyze FASTQ files containing the 
shotgun metagenomics raw data. This multi-step work-
flow contains data cleaning/trimming, assembly of reads 
into contigs, binning of contigs into MAGs, as well as 
taxonomic analysis of the MAGs and functional annota-
tion of all gene products encoded in the MAGs (Table 1).

The MetaG workflow accepts Illumina paired-end 
FASTQ sequence files (forward and reverse reads) as 
input files (Fig.  1.1). The FASTQ-files can be uploaded 
to Galaxy via the web interface or using FTP and should 
be organized as a collection of paired datasets. As qual-
ity control (Fig.  1.2), we use FastQC (https:// www. bioin 
forma tics. babra ham. ac. uk/ proje cts/ fastqc/) with a Phred 
threshold of 20 to be aware of occasional nucleotide read-
ing errors or overrepresentation of features, like primers 
or sequencing adapters. The quality control is followed 
by a data preprocessing steps, including automatic detec-
tion and trimming (Fig. 1.3) of adapter sequences by Trim 
Galore! (https:// www. bioin forma tics. babra ham. ac. uk/ 
proje cts/ trim_ galore/). The collection of trimmed paired 
reads is then split into a list of forward and reversed 
reads for co-assembly. The metagenomic reads are fur-
ther assembled (Fig. 1.4) into contigs with k-mer sizes of 
21, 29, 39, 59, 79, 99, 119, and 141 using MEGAHIT [30]. 
The quality for assemblies is assessed using metaQUAST 
[31] (Fig. 1.5) in meta-mode. The contigs are binned into 
MAGs (Fig. 1.6) by MaxBin2 [19] based on an expecta-
tion–maximization algorithm with a minimum contig 
length of 1000. Completeness, contamination, and strain 
heterogeneity are analyzed using CheckM [33] and read 
coverage using CoverM (https:// github. com/ wwood/ 
CoverM) (Fig. 1.7). Further, taxonomic annotation for the 
MAGs is done with the Bin Annotation Tool [34] (range: 
10, fraction: 0.5) (Fig. 1.8). The genomes are individually 
subjected to gene prediction (Fig. 1.9) using the software 
FragGeneScan [35], which outputs FASTA-files of both 
nucleotide and protein sequences.

The putative proteins are then functionally annotated 
(Fig.  1.10) using InterProScan [39] with the databases 
TIGERFAM [45], HAMAP [46], PfamA [47], and Gene 

https://toolshed.g2.bx.psu.edu/
https://toolshed.g2.bx.psu.edu/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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Ontology [48], while KoFamScan [49] provides enzyme 
commission numbers (EC) and annotation from KEGG 
[50]. For prediction of carbohydrate-active enzymes 
(CAZymes), the MetaG workflow uses Hidden Markov 
Models from dbCAN [38], downloaded from https:// bcb. 
unl. edu/ dbCAN2/ and used within the software HMMER 
[51]. To facilitate downstream analyses, we combine all 
the functional annotations from InterProScan, KoFam-
Scan and dbCAN into one file using a script within the 
Galaxy implementation of awk to generate a tabular file 
with one protein per row and the different annotations in 
individual columns. This file of functional annotation of 
all gene products in the metagenome, together with the 
output from taxonomic analysis, is used for more detailed 
data exploration and interpretation in ViMO (Fig. 1.18). 
Optionally, the putative genes and proteins from FragGe-
neScan [35] can be manually augmented with strains 
from public repositories such as NCBI, UniProt or IMG.

Workflow for metatranscriptomics (MetaT)
The MetaT workflow provides all the processing steps 
and parameters to analyze raw metatranscriptomics 

paired-end reads. This multi-step workflow contains data 
cleaning/trimming, RNA filtering, mRNA quantification, 
and mapping to the predicted genes from the metagen-
ome from the MetaG workflow (Table 1).

As input files (Fig.  1.11), the MetaT workflow accepts 
Illumina FASTQ sequence files (forward and reversed 
reads), which can be uploaded to Galaxy via web inter-
face and organized as a collection of paired datasets. 
The workflow includes data preprocessing, where qual-
ity control (Fig.  1.12) of the sequences is done with 
FastQC to assess the overrepresentation of features, 
such as primers or adapters, with a Phred threshold of 
20. Adapter sequences are automatically detected and 
trimmed (Fig. 1.13) by Trim Galore!. Sequencing of RNA 
results in a mixture of coding and non-coding RNA frag-
ments, and the highly abundant ribosomal RNA in the 
samples are filtered out (Fig.  1.14) in order to use only 
mRNA transcripts for the analysis [52]. Thus, rRNA and 
tRNA are removed using the software SortMeRNA [41]. 
This is followed by mRNA quantification and mapping 
(Fig.  1.15). The mRNA quantification is done with the 
software Kallisto [42], which pseudoaligns mRNA reads 

Table 1 List of software in the MetaG, MetaT, MetaP workflows

*Tools unique for the optimized MetaG workflow

Workflow Software version References/webpage

MetaG

Trimming Trim Galore! (Galaxy version 0.6.7 + galaxy0) (https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
trim_ galore/)

Quality control FastQC (Galaxy version 0.73 + galaxy0) (https:// www. bioin forma tics. babra ham. ac. uk/ proje 
cts/ fastqc/)

Assembly MEGAHIT (Galaxy version 1.1.3.5) [30]

Assembly quality metaQUAST (Galaxy version 5.2.0 + galaxy0) [31]

Binning MaxBin2 (Galaxy version 2.2.7 + galaxy3) [19]

Dereplication* dRep (Galaxy version 3.2.2 + galaxy0) [32]

Genome quality assessment CheckM lineage_wf (Galaxy Version 1.2.0 + galaxy0) [33]

Read coverage CoverM-GENOME (Galaxy Version 0.2.1 + galaxy0) (https:// github. com/ wwood/ CoverM)

Read coverage CoverM-CONTIG (Galaxy Version 0.2.1 + galaxy0) (https:// github. com/ wwood/ CoverM)

Bin annotation CAT bins (Galaxy version 5.0.3.0) [34]

Gene prediction FragGeneScan (Galaxy version 1.30.0) [35]

CAZyme annotation Hmmscan (Galaxy version 0.1.0) with dbCAN-HMMdb-
V10

[36–38]

KOfam annotation KofamScan (Galaxy version 1.3.0 + galaxy1)

Functional annotation Interproscan (Galaxy version 5.0.0) [39]

MetaT

Trimming Trimmomatic (Galaxy version 0.38.1) [40]

Quality control FastQC (Galaxy version 0.73 + galaxy0 (https:// www. bioin forma tics. babra ham. ac. uk/ proje 
cts/ fastqc/)

rRNA removal SortMeRNA (Galaxy version 2.1b.6) [41]

mRNA quantification and mapping Kallisto quant (Galaxy version 0.46.0.4) [42]

MetaP

Protein quantification MaxQuant (Galaxy version 1.6.3.4) [43, 44]

https://bcb.unl.edu/dbCAN2/
https://bcb.unl.edu/dbCAN2/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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onto nucleotide sequences (in this case the predicted 
genes from FragGeneScan in the MetaG workflow), and 
is thereby skipping alignment for redundant kmers in 
the De Bruijn graph from the transcriptome, which saves 
time while being accurate and sensitive [42]. The outputs 
from Kallisto, one per sample, are finally joined in order 
to generate one single file to use in ViMO (Fig. 1.18).

Workflow for metaproteomics (MetaP)
For the MetaP workflow, RAW files from the mass 
spectrometric analysis are uploaded to Galaxy via the 
web interface or FTP and organized as a collection list. 
MaxQuant [43] within Galaxy (version 1.6.17.0) require 
uploading a file describing the experimental design, i.e., a 
text-file with a list of all the RAW files and which experi-
ment/biological replicate they belong to (Fig.  1.16). The 
rest of the parameters can be selected at run-time in Gal-
axy, including proteolytic cleavage, matching between 
runs, fixed and variable peptide modifications, and 
parameters for identification; for this dataset, these are 
described in Delogu et al. [28]. MaxQuant (Fig. 1.17) in 
Galaxy is then used to identify and quantify proteins by 

matching MS/MS spectra onto the protein sequences 
predicted by FragGeneScan [35] in the MetaG workflow 
(Table  1). The output from MaxQuant (Proteingroups.
txt) is used for downstream analysis in ViMO (Fig. 1.18). 
It should be noted that MaxQuant has some limitations 
with large databases (> 500.000 protein entries), and we 
are seeking to replace this software with FragPipe in the 
future versions of this MetaP workflow to scale along the 
fast growth in metagenomics in recovering hundreds of 
MAGs from various samples.

Data integration in ViMO: visualizer for meta‑omics
Analyzing and exploring multi-leveled meta-omics data 
is not a trivial task and requires linking information from 
metagenomics, such as the presence of specific pathways 
within selected MAGs, with expression data from tran-
scriptomics and proteomics analysis. This level of data 
integration is complicated and not practical in spread-
sheet applications such as Excel and is thus typically 
achieved through scripting with Python or R. Preferably, 
interactive tables and maps would allow data exploration 
where the user can browse through the catalog of MAGs 

Fig. 1 Workflows for meta-omics. The integrated analysis of meta-omics contains a MetaG, MetaT and MetaP workflow. MetaG includes data 
preprocessing steps with quality control and trimming, followed by assembling, binning and taxonomically annotation of the MAGs. Open reading 
frames (ORFs) and nucleotide sequences are predicted by FragGeneScan. Functional annotation is performed by InterProScan and dbCAN-HMMER. 
The predicted ORFs and nucleotide sequences are further used in the MetaP and MetaT workflow; hence, the MetaG serves as the base analysis 
and the MetaT and MetaP are mapped onto the MetaG. After preprocessing the data and rRNA removal, the predicted nucleotide sequences 
from the MetaG workflow are used for the mRNA quantification and mapping by Kallisto, as well as for MaxQuant in the MetaP workflow
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present in the samples and their metabolisms, while 
receiving visualizations of expressed genes and functions. 
This was our motivation for developing ViMO.

ViMO is provided with a script that reads the follow-
ing output from the MetaGTP workflows and gener-
ates a Masterfile and a Contig file for import: (1) All the 
dereplicated genomes with their contigs, (2) the file con-
taining all putative proteins annotated with functional 
predictions from InterProScan, dbCAN and KoFamScan, 
(3) metagenomic coverages of contigs as well as com-
pleteness, contamination and strain heterogeneity from 
CoverM and CheckM, (4) the taxonomic annotations 
from CAT/BAT, (5) the quantification of mRNA from 
Kallisto, and (6) the quantification of proteins from Max-
Quant. Obviously, ViMO is also functionable with a simi-
lar Masterfile generated from a custom workflow, either 
in Galaxy or elsewhere, e.g., using different software for 
quantification such as FragPipe [53], as long as the essen-
tial columns are present in the final Masterfile; this is 
described in the help-section of ViMO.

Once the files are loaded, ViMO provides four core 
analyses. (1) MAGs, an overview of all detected MAGs 
including counts of contigs and genes, contamination, 
completeness and taxonomy, as well as a figure of %GC 
versus metagenomic coverage to illustrate the coherence 
within each MAG. (2) CAZy, an overview of all detected 
CAZymes including carbohydrate esterases (CEs), glyco-
syl transferases (GTs), glycoside hydrolases (GHs), poly-
saccharide lyases (PLs), carbohydrate binding domains 
(CMBs), auxiliary activities (AAs) and components of 
cellulosomes, with their counts and abundances at both 
mRNA and protein level. Heatmaps allow for visualiza-
tion of temporal changes between samples, if applicable 
in the experimental design. (3) KEGG, an overview of 
all genes with a KEGG annotation, sorted and selecta-
ble into KEGG pathways, with counts and abundances at 
both mRNA and protein level (Fig. 2A). ViMO allows fil-
tering down to a specific pathway and downloads KEGG-
maps and highlight the detected enzymes within the 
pathways with colors representing abundance, at both 
mRNA and protein level (Fig. 3). This allows detection of 
highly expressed pathways within the microbial commu-
nity and in which MAGs they are most abundant. While 
this is possible to retrieve through the standard KEGG 
web-interface (KEGG Mapper [50]), one would have 
to copy all the proteins and abundances into the web-
interface manually and for one MAG at the time, while 
ViMO retrieves this information automatically while the 
user browses through the MAGs. (4) KEGG-Modules, 
calculate the module completion fraction (mcf) for all 
KEGG-modules in all MAGs and visualize the metabolic 
potential of each MAG in a heatmap (Fig. 2B). This can 
optionally be filtered to lower-level KEGG categories. 

The powerful KEGG modules network allows for 
inspecting the completeness, meaning the presence of 
the complete set of enzymes required for a given meta-
bolic reaction and was implemented in ViMO using the 
R-package MetQy [54]. Alternatively, similar heatmaps 
can be generated with the KEGGDecoder software [55]; 
however, here this is done automatically within ViMO 
and with interactive filtering options.

In terms of limitations and guidelines for best usage, 
ViMO works best with meta-omics datasets containing 
up to ~ 50 MAGs/ ~ 150.000 genes due to the extensive 
plotting and interactivity. Although we have successfully 
assessed its functionality with larger datasets of > 250 
MAGs, we have observed that the app slows down 
remarkably due to R being an on-the-fly interpreted lan-
guage. Moreover, functional graphs with > 250 MAGs 
(with individual colors) become less useful/interpret-
able, and we advise our users to rather employ parts of 
the ViMO code to their data locally to better optimize 
the parameters to fit the data. The code is freely avail-
able under GLP3 at https:// github. com/ magnu sarnt zen/ 
ViMO.

Alternative optimized workflow for metagenomics analysis 
in Galaxy
As metatranscriptomics and metaproteomics are mapped 
to, and thus depend on the quality of the metagenomic 
data, it is critical that this step is optimized using the 
best method available. The optimized MetaG workflow 
contains both a co-assembly (Fig. 4.4, 4.5), similar to the 
standard MetaG workflow above, but also with individual 
assemblies ran in parallel. For the individual assemblies, 
trimmed paired-end reads (Fig.  4.3) are split (Fig.  4.6) 
using the sample name as an element identifier into 
smaller collections per sample, containing the forward 
and reversed reads for each sample. Each sample is then 
assembled (Fig. 4.7) by MEGAHIT with k-mer sizes of 21, 
29, 39, 59, 79, 99, 119, and 141, and the quality for assem-
blies are analyzed with QUAST in meta-mode (Fig. 4.9). 
The contigs are then binned (Fig. 4.8) by MaxBin2 (contig 
length ≥ 1000) and MAGs from each sample are merged 
(Fig. 4.10) together with the co-assembly into one collec-
tion with a sample identifier to trace the sample origin of 
the MAG in further downstream analysis. The merging of 
MAGs is followed by dereplication (algorithm ANImf, P_
ani: 0.90, S_ani: 0.95) with dRep [32] (Fig. 4.11) for identi-
fication of groups of highly similar genomes and choosing 
the best representative genome within the genome sets. 
Completeness, contamination, and strain heterogeneity 
of each MAG is then reported by CheckM and read cov-
erage by CoverM (Fig. 4.12). Further downstream analy-
sis involves, as in MetaG, the prediction of nucleotide 
sequences and ORFs by FragGeneScan and functional 

https://github.com/magnusarntzen/ViMO
https://github.com/magnusarntzen/ViMO
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annotation by InterProScan and dbCAN-HMMER. The 
predicted ORFs and nucleotide sequences are further 
used in the MetaP and MetaT workflow (Fig. 1).

Table  2 shows the contig counts and dataset statis-
tics obtained by using both the standard and optimized 

MetaG workflows, on both the small bioreactor data-
set used for developing these workflows, and for an in-
house large complementary (Comp) dataset with 253 
MAGs to stress-test the analysis pipelines.

Fig. 2 ViMO visualizations. A ViMO produces bar plots to visualize the gene counts and abundances of KEGG-pathways in the different bins, 
here filtered to pathways in energy metabolism. For metagenomics, all timepoints are used, while for metatranscriptomics and metaproteomics, 
only the first timepoint is shown here and the user can select which sample/timepoint to visualize. In addition, ViMO displays heatmaps with all 
timepoints within one graph for metatranscriptomics and metaproteomics to visualize temporal changes (data not shown). B ViMO calculates 
the module completion fraction (mcf ) for all KEGG modules (x-axis; only a subset displayed here) and MAGs (y-axis) and thus visualize the metabolic 
potential of each MAG. The set of visible modules can be filtered to selected KEGG pathways for in-depth exploration
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Fig. 3 Annotated KEGG-maps. In ViMO, when KEGG-pathways are selected (top, filtered to pathways in carbohydrate metabolism), a KEGG-map 
is downloaded and annotated with abundances of expressed genes for the selected MAG. Here is shown the Glycolysis/Gluconeogenesis 
pathway of MAG001, a bacterium from the Tissierellia class in the SEM1b community, annotated with metaproteomic abundances ranging 
from low-abundant (0 LFQ; light yellow) to high-abundant (4e9 LFQ; dark red); blue enzymes are not detected in the metaproteome for this MAG
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Contigs with similar tetranucleotide frequencies 
are binned to one MAG [56], and as is evident from 
Tables 2 and 3, the extra contigs provided by the indi-
vidual assemblies in the optimized MetaG workflow, 
aids in the binning process and increases the number 
of high-quality MAGs compared to the bare use of co-
assembly in the standard MetaG workflow.

The optimized MetaG workflow results in 10 MAGs 
from the co-assembly and 11 MAGs from the individ-
ual assemblies, from which 7 MAGs of almost exclu-
sively high-quality are selected after the dereplication 

process (Table  4), whereas from the standard MetaG 
workflow, only one MAG is of high-quality.

Completeness and contamination of the MAGs are 
highly valuable metrics for the reliability of reconstructed 
metabolic pathways and annotated taxonomy [57]. In 
order to obtain at least “good-quality” MAGs (complete-
ness > 70% and contamination < 10%) based on the stand-
ards by Bowers et al. [58], Galaxy currently contains three 
tools for this purpose: Binning_refiner [59], DAS Tool 
[60], and dRep. Binning_refiner searches for common 
contigs between each set of MAGs from different bin-
ning iterations creating the refined MAG, resulting in a 
non-redundant set of MAGs with decreased contamina-
tion and increased completeness [59]. Redundant MAGs 
lead to misinterpretations of the relative abundance and 
population dynamics throughout the different samples 
[61], a problem that is also addressed by DAS Tool and 
dRep. DAS Tool refines MAGs by evaluating the com-
mon contig set between MAGs, again obtained by dif-
ferent binning iterations, and the remaining potential 
MAGs are selected based on the F1-score followed by an 
iterative selection of high-scoring MAGs [60]. Another 
approach to extract only one high-quality representative 
of a replicate set of MAGs is dereplication by dRep using 
the MASH- and gANI algorithms to estimate distance 
and similarity between the MAGs and taking preset 
completion and contamination scores into account [32]. 
Dereplication results in a set of at least “good-quality” 
MAGs, which improves the downstream annotations and 

Table 2 Contigs and dataset statistics for the two MetaG workflows

Contigs were analyzed with CoverM and metaQuast. For the optimized MetaG workflow, which includes both co- and single assemblies, the percentage of unbinned 
contigs is reported as the average number after dereplication. Both a small (bioreactor) and a large (in-house complementary; comp) dataset is included to stress-test 
the analysis pipelines

Dataset Workflow Contigs (MEGAHIT) Unbinned 
contigs (%)

N50/L50 Longest contig

Bioreactor,
Small dataset with 10 MAGs

MetaG 11,386 6 38,958/118 391,662

Optimized MetaG 5

Co-assembly 11,296 28,943/145 351,556

Individual assemblies:

Sample-1 4003 44,326/58 391,662

Sample-2 12,098 27,635/128 391,715

Comp,
Large dataset with 253 MAGs

MetaG 1,923,986 11 2309/93,659 797,197

Optimized MetaG 20

Co-assembly 2,331,350 2474/10,2387 1,098,235

Individual assemblies:

Sample-1 310,224 2109/14,283 625,541

Sample-2 511,518 2530/24,745 715,289

Sample-3 450,745 2083/20,003 872,994

Sample-4 532,077 2820/21,306 862,734

Sample-5 303,656 2548/13,484 497,688

Sample-6 223,130 2523/9460 1,098,235

Table 3 Quality of MAGs generated in the two workflows

The number of MAGs with low, medium, and high quality are counted for the 
standard and optimized MetaG workflow for both the Bioreactor and the Comp 
dataset
a < 50% completion, ≥ 10% contamination
b ≥ 50% completion, < 10% contamination
c > 90% completion, < 5% contamination

MAG quality count Bioreactor Comp

MetaG Optimized 
MetaG

MetaG Optimized 
MetaG

Lowa 6 0 172 42

Mediumb 3 1 63 51

Highc 1 6 18 50

Sum 10 7 253 143
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is therefore an important tool in our optimized MetaG 
workflow (Fig. 4).

Concluding remarks
Herein we have presented the development of three inte-
grated workflows for the analysis of meta-omics data, 
including a new tool for data visualization, ViMO. The 
workflows have been developed using a small dataset 
containing 10 MAGs, a subset of this is also provided as 

example input in the online version of ViMO. In addition, 
we have verified the workflows’ applicability to a larger 
dataset, as exemplified in Tables 2 and 3. Together, these 
Galaxy-based workflows and interactive visualizations 
allows scientists to explore and characterize microbiomes 
without prior knowledge in the use of compute clusters 
and scripting. Although nesting software in workflows 
promotes reproducible science, biological samples natu-
rally vary in their complexity and heterogeneity, and may 

Table 4 Taxonomy and quality values for MAGs generated with the two workflows

Quality values were obtained by CheckM and taxonomic annotation by the program ‘CAT bins’. The data is from the Bioreactor dataset

MetaG (Bin) Taxonomy Completeness Contamination Strain 
heterogeneity

Bin1 Hungateiclostridium 87.72 24.24 0.00

Bin2 Coprothermobacter proteolyticus 25.00 0.00 0.00

Bin3 Coprothermobacter proteolyticus 14.61 4.55 100.00

Bin4 Coprothermobacter proteolyticus 23.38 10.96 48.15

Bin5 Acetomicrobium 97.41 14.66 100.00

Bin6 Coprothermobacter proteolyticus 9.25 0.00 0.00

Bin7 Firmicutes 97.90 6.53 0.00

Bin8 Methanothermobacter 100 1.29 0.00

Bin9 Clostridia 98.08 8.44 0.00

Bin10 Thermoclostridium stercorarium 83.92 6.29 0.00

Optimized MetaG

Opt-Bin1 Hungateiclostridium thermocellum 99.33 0.00 0.00

Opt-Bin2 Coprothermobacter proteolyticus 100.00 1.79 0.00

Opt-Bin3 Acetomicrobium 97.46 1.69 100.00

Opt-Bin4 Tepidanaerobacter 98.08 7.69 0.00

Opt-Bin5 Firmicutes 97.90 4.55 0.00

Opt-Bin6 Methanothermobacter 100.00 3.69 29.41

Opt-Bin7 Thermoclostridium stercorarium 98.60 4.06 0.00

Fig. 4 Optimized metagenomic workflow. We have created an optimized MetaG workflow to improve the quality of the MAGs. This is achieved 
by assembly and binning of the reads individually, in parallel to a co-assembly, and combined and dereplicated to exclude redundant MAGs 
before bin annotation, gene prediction and functional annotation. Two samples S1 and S2 are shown as an example. Differences to the original 
MetaG workflow are highlighted in yellow
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require different tool parameters. We therefore recom-
mend that as our workflows are adapted by the wider 
community, each step in the workflows are adjusted 
and parameters optimized before analyzing new sample 
material. Our workflows may also be further extended 
with new capabilities from existing microbiome research 
tools [62] or as new tools are added to the Galaxy Plat-
form in the future, such as for example FragPipe [53] for 
enhanced proteomics analysis, and Prodigal [63] for pre-
dicting genes in the MetaG workflow.
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