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Abstract 

Background Recent endeavours in metagenomics, exemplified by projects such as the human microbiome project 
and TARA Oceans, have illuminated the complexities of microbial biomes. A robust bioinformatic pipeline and meticu-
lous evaluation of their methodology have contributed to the success of these projects. The soil environment, how-
ever, with its unique challenges, requires a specialized methodological exploration to maximize microbial insights. 
A notable limitation in soil microbiome studies is the dearth of soil-specific reference databases available to classifiers 
that emulate the complexity of soil communities. There is also a lack of in-vitro mock communities derived from soil 
strains that can be assessed for taxonomic classification accuracy.

Results In this study, we generated a custom in-silico mock community containing microbial genomes commonly 
observed in the soil microbiome. Using this mock community, we simulated shotgun sequencing data to evaluate 
the performance of three leading metagenomic classifiers: Kraken2 (supplemented with Bracken, using a custom 
database derived from GTDB-TK genomes along with its own default database), Kaiju, and MetaPhlAn, utilizing their 
respective default databases for a robust analysis. Our results highlight the importance of optimizing taxonomic 
classification parameters, database selection, as well as analysing trimmed reads and contigs. Our study showed 
that classifiers tailored to the specific taxa present in our samples led to fewer errors compared to broader databases 
including microbial eukaryotes, protozoa, or human genomes, highlighting the effectiveness of targeted taxonomic 
classification. Notably, an optimal classifier performance was achieved when applying a relative abundance thresh-
old of 0.001% or 0.005%. The Kraken2 supplemented with bracken, with a custom database demonstrated superior 
precision, sensitivity, F1 score, and overall sequence classification. Using a custom database, this classifier classified 
99% of in-silico reads and 58% of real-world soil shotgun reads, with the latter identifying previously overlooked phyla 
using a custom database.

Conclusion This study underscores the potential advantages of in-silico methodological optimization in metagen-
omic analyses, especially when deciphering the complexities of soil microbiomes. We demonstrate that the choice 
of classifier and database significantly impacts microbial taxonomic profiling. Our findings suggest that employing 
Kraken2 with Bracken, coupled with a custom database of GTDB-TK genomes and fungal genomes at a relative abun-
dance threshold of 0.001% provides optimal accuracy in soil shotgun metagenome analysis.
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Background
Shotgun metagenomics is defined as untargeted sequenc-
ing of all the genomes present in a sample [1] facilitating a 
de novo analysis of both taxonomical and functional pro-
files without any prior knowledge [2]. This approach has 
not only significantly expanded the tree of life by incor-
porating genomes from previously unculturable micro-
bial lineages but is also poised to gain prominence due to 
the falling costs and heightened efficiency and speed of 
sequencing technologies [3, 4]. In the field of antimicro-
bial resistance, the soil microbiome is emerging as one of 
the critical frontiers. Studies suggest that a large number 
of new antimicrobial resistance genes may be contained 
in soil ecosystems [5–10]. In addition, soil plays an inte-
gral role in a host of essential functions, such as nutrient 
cycling, carbon sequestration, plant pathogen resistance, 
drought tolerance, amongst others. It is imperative that 
the wet-lab and bioinformatic methods applied permit us 
to accurately investigate the complexity and potential of 
the soil microbiome.

Several taxonomic classifiers have been developed for 
analysing taxonomic abundance from the growing vol-
ume of sequenced data [11–17]. A considerable num-
ber of these previous studies have featured Kraken2, 
Kaiju, and MetaPhlAn in their comparative analysis of 
metagenomic classifiers [11–19]. There is, however, a 
gap in benchmarking efforts targeting shotgun sequenc-
ing in the context of soil microbiomes, as most previous 
studies have focused on 16S rRNA amplicon sequencing, 
or long-read sequencing focused on food microbiomes 
or clinical pathogens. These studies scrutinize a variety 
of parameters including sequencing platform, classifier 
choice, sequencing depth, relative abundance thresh-
old or filtering thresholds (which refer to the set criteria 
for determining the minimum abundance a microbial 
entity must have in a sample to be included in the data 
analysis), and the effectiveness of using trimmed versus 
assembled contigs in the analysis [20]. Nonetheless, the 
intricate landscape of soil datasets, from the presence of 
a significant number of uncultured microbes (leading to 
an incomplete reference database) to an inherently ele-
vated microbial complexity, still lacks a focused bench-
marking study.

A significant hurdle in adequately emulating such a 
complex microbiome in sequenced data lies in the formu-
lation of a mock community that is reflective of the vast 
diversity of microbial strains associated with soil. It is 
important to note that our inability to culture many soil-
identified microbes in laboratories results in a reliance on 
mock communities that may poorly represent the true 
microbial diversity in soil samples. Despite recent efforts 
to develop appropriate mock communities, (including 
the most extensive soil bacterial strain mock community 

to date containing 254 strains [21]), the sheer diversity 
found in real soil samples is far greater than can feasi-
bly be incorporated. Studies report up to  104 microbial 
species are found per gram of soil [22] and there are 888 
bacteria, 24 archaea, and 6 fungal strains documented 
in the public database, RefSoil [23]. This significant dis-
parity underscores the current limitations in creating 
a mock community that mirrors the diversity and com-
plexity seen in natural soil microbiomes. This study sets 
a new benchmark representing the soil microbiome with 
a total of 2795 unique strains, including 2621 bacteria, 60 
archaea, and 114 fungal strains.

In typical soil shotgun studies, soil taxonomy serves a 
pivotal role in correlating functional analysis elements 
such as biosynthetic gene clusters, the antimicrobial 
resistance profile, or nutrient cycling genes. However, 
the study by Laura et  al. 2022, takes a step forward by 
leveraging the classifier Kraken2 for a nuanced classi-
fication of identified antimicrobial resistance genes in 
soil samples, potentially offering a more refined insight 
into microbial community dynamics and functionalities 
[24]. Despite this method’s potential for enhanced preci-
sion and depth, benchmarking studies are vital to con-
firm these initial findings. Given the current limitations, 
comprehensive in-silico studies have emerged as a vital 
tool to enhance the accuracy and depth of soil microbi-
ome analyses. Furthermore, in-silico approaches allow 
for the efficient analysis of highly diverse sample types, 
enhancing overall statistical effect size while minimizing 
associated costs. These methods are not only seamless 
in their application but are highly adaptable to techno-
logical advancements thereby allowing reanalysis of data. 
Moreover, these methods also negate the influences of 
sequencing platform discrepancies and manual errors 
commonly encountered in wet-lab method benchmark-
ing [25].

In this study, we employ both simulated and real-world 
soil data to ascertain the misclassification rates at spe-
cies, genus and family levels when utilising commonly 
adopted classification tools used in Illumina shotgun 
metagenomic analysis. We first created a soil-specific 
database that compiled genomes of soil bacteria, archaea, 
and fungi from public databases. Leveraging this in-silico 
representative soil dataset, we performed a compara-
tive analysis of three prominent taxonomic classifiers: 
Kraken2 (supplemented with Bracken), Kaiju, and Met-
aPhlAn (versions 3 and 4). The objective of this study was 
to evaluate the ability of each classifier to precisely detect 
and quantify the archaeal, bacterial, and fungal com-
munities in our in-silico samples and to understand the 
elements driving this precision. Having determined the 
most efficient classifier and parameter setup, we applied 
this refined approach to analyse real soil data, enabling a 
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thorough comparison with the conclusions derived from 
prior studies.

Material and methods
Our research aimed to identify the optimal taxonomic 
classifier and parameters for taxonomic profiling of 
shotgun metagenomic data from soil. Notably, a com-
prehensive public soil-specific genome database encom-
passing both culturable and non-culturable soil genome 
information is currently unavailable. To address this gap, 
we developed our database, merging genomes from the 
NCBI database with those from the RefSoil database, 
which exclusively houses genome information of cultur-
able soil-specific microbes. This resulted in an in-depth 
collection of 2795 unique strains, encompassing bacte-
ria, archaea, and fungi. Leveraging this soil-specific in-
silico mock community, we simulated ten NovaSeq runs, 
each comprising 20 samples with 150  bp read length. 
After thorough quality checks and trimming, we assem-
bled the reads into contigs. Both the refined reads and 
assembled contigs were then subject to analysis by vari-
ous taxonomic classifiers, including Kaiju, MetaPhlAn 3, 
MetaPhlAn 4, Kraken2 using a default database referred 
as “Kraken2 (default)” and a modified Kraken2 version 
utilizing a custom database from GTDB-TK genomes, 
which we will refer to as "Kraken2 (custom)" henceforth. 
The core of our analysis was to evaluate the capacity of 
each classifier in precisely detecting and quantifying the 
archaeal, bacterial, and fungal communities in our in-sil-
ico samples and to understand the elements driving this 
precision.

In‑silico mock community database construction
To create the soil-specific database encompassing bac-
terial, archaeal, and fungal genomes, we combined 
metadata records from the National Center for Bio-
technology Information (NCBI) and the previously 
published RefSoil database [2]. From the NCBI, we 
identified bacterial and archaeal genomes that were 
labelled "complete genome" and specified as isolated 
from soil. These genomes were retrieved from the 
nucleotide database as of 14-02-23 using the R package 
rentrez (R version 4.3.1). While a significant proportion 
of these genomes were sourced from Refseq, sequences 
lacking a Refseq representative were supplemented 
with data from GenBank using the same parameters 
(Fig. 1). To incorporate soil-derived fungal genomes, we 
utilized metadata from the MAIE database (INRAE), 
detailing fungal species isolated from soil, which 
belonged to phylum Basidiomycota, Ascomycota, and 
Mucoromycota. While acknowledging that soil’s fun-
gal community is more diverse, our inclusion was lim-
ited by the available metadata on soil-derived fungal 

species, compared to bacteria and archaea. FASTA files 
for these fungi were extracted using NCBI command 
line tools. Extracted genomes were integrated with 
the existing RefSoil database, which houses culturable 
soil-specific organisms spanning bacteria, archaea, and 
fungi. Finally, we conducted a deduplication process to 
ensure the retention of unique strains only. The final 
soil-specific genome database, thus, encompassed a 
total of 2795 unique strains with 2621 bacterial strains, 
60 archaeal strains, and 114 fungal strains. The result-
ing manually curated database: ‘SoilGenomeDB’ rep-
resents both culturable and unculturable soil-specific 
microbes available in NCBI (Fig. 1).

In‑silico library preparation and sequencing simulations
Ten in-silico NovaSeq sequencing libraries were pre-
pared, with each NovaSeq simulation containing 20 
samples, a selection determined to provide a statisti-
cally sufficient number of data points across the runs. 
The number of taxa per sample and the number of reads 
per sequencing were set using a custom script [26]. Each 
sample was composed of 1000–25000 genomes, ran-
domly subsampled from the in-silico mock community 
genome database. This range was chosen to best rep-
licate the inherent complexity of soil environments by 
incorporating a diverse array of genomes in each sample. 
Following this, the assignment of reads per sample was 
executed using the R package ‘EnvStats’ (version 2.7.0). 
The distribution of reads was set to a truncated log-nor-
mal pattern, ranging from a minimum of 5 million to a 
maximum of 50 million reads per sample, with an average 
of 16 million reads per sample per run. Once the FASTA 
files were obtained for each sample, barcodes were intro-
duced using ‘seqkit’ (version 1.4) mutate. Following bar-
code integration, simulations were then executed using 
‘InSilicoSeq’ within the Python3.7 environment [27]. For 
each sequence in the input FASTQ file, a zero-inflated 
log-normal distribution was employed, specifically for a 
paired-end 150-bp NovaSeq run.

Data quality control
Using trimgalore (v0.6.1) barcodes were trimmed from 
the FASTQ files with Phred score cutoff of 33. A visual 
representation detailing this procedure can be found in 
Fig.  2. These trimmed reads were used as the input for 
the classification of short reads.

Trimmed simulated Illumina reads were assembled 
into contigs with Spades (v 3.15.3) using flags --meta, 
-m 500, -t 24, --phred-offset 33, -k 21,33,55,77 [4]. These 
reads were used as the input for the classification of 
assembled reads.
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Classifier‑Specific Database construction
Kaiju
Given the composition of our sample, which was com-
posed of archaea, bacteria, and fungi, we elected to 
utilize the ‘nr_euk’ database in Kaiju. The ‘nr_euk’ 
database entails a subset of the NCBI BLAST nr data-
base containing all proteins belonging to archaea, bac-
teria, viruses, fungi and microbial Eukaryotes (as of 
05/03/2023) [28].

Kraken2 (default)
The ‘plus-pf ’ database was used as the default data-
base for Kraken2. This database consists of complete 
genomes in RefSeq for bacterial, archaeal and viral 
genomes, human genome and collection of known vec-
tors (UniVec_Core) plus RefSeq protozoa and fungi (as 
of 21/07/2022) [29]. A corresponding Bracken database 
was established, and the bracken abundance profiles 
were used for analysis [30].

Kraken2 (custom)
To create a custom Kraken2 database, all genome_reps 
from the GTDB repository’s latest release (GTDB; lat-
est, 2023-04-27 23:33) were downloaded [31]. The data-
base includes only bacterial and archaeal genomes, hence 
fungal genomes were downloaded separately. For Fungal 
genomes; all genomes available for phylum Basidiomy-
cota, Mucoromycota, and Ascomycota (as of 6-12-2022) 
were downloaded from NCBI using NCBI command line 
tools. A custom Kraken2 and a corresponding Bracken 
database was then created assigning the downloaded 
genomes using NCBI taxonomy file. This setup utilized 
a k-mer length of 39. The Bracken-generated abundance 
profiles were employed for all subsequent analysis in the 
current study.

MetaPhlAn
Both MetaPhlAn 3 (version 30) and MetaPhlAn 4 (ver-
sion 4.0) analyses were conducted utilizing the Humann3 
module. The specific databases engaged for MetaPhlAn 3 

Fig. 1 Flowchart detailing the genome selection process for the establishment of a soil microbiome database/mock community. This schematic 
illustrates the steps and criteria employed to curate genomes of bacteria, archaea, and fungi from various databases
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and 4 were mpa_v30_CHOCOPhlAn_201901 and mpa_
vJan21_CHOCOPhlAnSGB_202103, respectively [32].

Benchmarking taxonomic classifiers
The trimmed in-silico FASTQ files underwent taxo-
nomic profiling utilizing the classifiers described 
above (detailed version control information can be 
found in Table  1). Each classifier operated using the 

allocation of 10 CPUs per task. In our study, taxo-
nomic outputs often contained strain-level informa-
tion, leading to discrepancies across classifier results, 
especially at the species level. To streamline compari-
sons, we focused on species-level identifications by 
retaining only the first two elements (genus and spe-
cies) of each taxonomic name and removing strain or 
subsequent details. This approach was particularly 

Fig. 2 Schematic representation of pipeline used to generate in-silico Illumina data and the taxonomic classifiers compared
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relevant for classifiers like Kaiju and Kraken2 (cus-
tom), which employ metagenome-assembled genomes 
(MAGs) having non-standard strain names. We 
also eliminated special characters to ensure naming 
consistency, ensuring that species written as ’Pseu-
domonas sp.’ Or ’Pseudomonas sp’ were identical for 
comparison purposes. While this standardization 
method has its limitations, it was the most transpar-
ent way to minimize discrepancies. To further validate 
our findings, we replicated our tests at the genus level, 
where naming inconsistencies were less pronounced, 
confirming the reliability of observed patterns across 
taxonomic classifications.

The taxonomic profiles generated by each classifier 
at various relative abundance thresholds were evalu-
ated based on several metrics: F1, precision, sensitivity, 
and Bray–Curtis community composition. Addition-
ally, the Euclidean distance metric was employed, and 
the Wilcoxon test, Kruskal Wallis test and Dunn tests 
were utilized to assess the significant impact of various 
factors on the results.

Using the F1 scores and Euclidean distances as a 
preliminary evaluation, the in-silico assembled con-
tigs were then compared. Contigs were processed with 
the top three classifiers from the initial evaluation: 
Kraken2 (default), Kaiju, and the Kraken2 (custom). 
We assessed these classifiers by comparing their F1 
score, Precision, and Sensitivity. This comparison was 
conducted on two levels: between the taxonomic clas-
sification of the contigs and the classification of qual-
ity-trimmed reads, as well as against quality-trimmed 
reads at the identified relative abundance threshold.

Statistical analysis
Statistical analysis was performed in R 4.3.1. The vegan 
package (version 2.6-4) was used for Bray–Curtis-based 
multidimensional scaling (MDS) analysis and calculat-
ing Euclidean distances. The analysis of variance using 
distance matrices (adonis2) function in vegan with 999 
permutations was used for PERMANOVA (permuta-
tional analysis of variance) analysis. The Kruskal–Wal-
lis test and Wilcox tests were performed in base R to 
identify significant differences, and the resultant p val-
ues were adjusted using the Bonferroni method. All 
the R packages and versions utilized in the paper are 
described in Additional file 2: Table S1.

Accuracy metrics
To ascertain the accuracy with which the taxonomic 
classifier captured the microbial profile of the in-silico 
shotgun community at the species and genus level, the 
critical metrics including Precision, Sensitivity, and 
the F1 score (as indicated below) were utilized to pro-
vide insights into the comparative performance of the 
classifiers.

Precision (Positive Predictive Value) quantifies how 
many of the predicted positive classifications were 
correct.

Sensitivity (Recall) measures the proportion of actual 
positives that are correctly identified.

Precision =
True Positives

True Positives + False Positives

Table 1 Comparison of taxonomic classifiers: performance metrics, database composition and classification accuracy

*MetaPhlAn4’s database primarily encompasses bacterial and archaeal sequences, with limited coverage of viral and eukaryotic microbial sequences [32]

Classifier MetaPhlAn Kraken2 and Bracken Kaiju

Version MetaPhlAn3 v.30 MetaPhlAn4 v.4.0 Kraken2/2.1.1 and Bracken/2.2 Kaiju/1.7.4

Database CHOCOPhlAn 201901 CHOCOPhlAnSGB 
202103

plus-pf custom database nr-euk

Organisms included 
in the database

Bacteria, Archaea, 
Eukaryota

Bacteria,Archaea, 
*Microbial Eukaryotes, 
*Virus

Bacteria, Archaea, 
Eukaryota, plasmid, 
human, Univec_core, 
Protozoa

Bacteria, Archaea, 
Eukaryota

Bacteria, Archaea, 
Eukaryota, Virus, 
Microbial Eukaryotes

Database size 2.4 GB 23 GB 61 GB 1.2 TB 144 GB

Processing time 
per sample (h:m:s)

3:02:38 4:24:14 0:43:29 2:20:08 11:23:26

Species F1 score (opti-
mal threshold)

0.26 ± 0.02 0.41 ± 0.02 0.74 ± 0.01 0.68 ± 0.0 0.48 ± 0.01

Species F1 score (no 
threshold)

0.26 ± 0.02 0.42 ± 0.02 0.5 ± 0.01 0.63 ± 0.01 0.11 ± 0.01

Unclassified 94.5% 90.6% 79.3% 0.46% 37.43%

Classified 5.5% 9.4% 20.7% 99.54% 62.57%
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F1 score is the harmonic mean of precision and sensitiv-
ity, which provides a single metric that encapsulates the 
balance between precision and sensitivity. It is particu-
larly useful when the data has imbalances.

Real environmental metagenome dataset
We aimed to assess whether the implementation of the 
best-performing classifier would alter our understanding 
of previously published data. To do this, we chose a soil 
metagenome dataset from a 2021 publication available in 
the NCBI Sequence Read Archive (SRA) by Mantri et al. 
[33]. The dataset met the following requirements: (i) orig-
inated from a soil matrix, (ii) sequenced using Illumina 
NovaSeq, (iii) raw sequencing files were publicly acces-
sible on the SRA with detailed metadata, and (iv) the 
original study utilized at least one of the classifiers under 
investigation. This dataset, closely reflecting our simu-
lated conditions, encompasses seven soil metagenomes.

We conducted a reanalysis of the environmental soil 
metagenomic dataset, which was previously exam-
ined using maxikraken (available from https:// loman 
lab. github. io/ mockc ommun ity/ mc_ datab ases. html), by 
applying Kraken2 (custom) to the published shotgun data 
for a more detailed investigation. Our analysis was then 
compared to the original published results at the phylum 
level. It is worth noting that we recreated the published 
figure using their taxonomic classification results, but 
with updated phylum names. A comparison between the 
original figure, which uses the old phylum names, and 
our rendition can be found in the Additional file 1: Fig. 
S6.

Results
We compared the performance of several taxonomic clas-
sifiers: Kaiju, Kraken2 with Bracken, MetaPhlAn 3, Met-
aPhlAn 4, and a custom version of Kraken2 with Bracken 
using a database derived from GTDB-TK genomes on 
our in-silico samples. The analysis aimed to determine 
the bacterial, archaeal, and fungal composition of the in-
silico shotgun metagenomic samples.

The DNA-to-Marker technique, applied by Met-
aPhlAn3 measures taxon genome counts relative to the 
total detected genomes. In contrast, Kraken2 operates 
on a DNA-to-DNA basis, and Kaiju utilizes a DNA-to-
Protein approach. Both aim to estimate the proportion 
of assigned sequences, thus emphasizing sequence abun-
dance over taxonomic abundance. Each classifier, while 

Sensitivity =
True Positives

True Positives + False Negatives

F1 score = 2×
Precision× Sensitivity

Precision+ Sensitivity

covering bacteria and archaea universally, relies on data-
bases with unique taxonomic inclusions. Kaiju’s “nr-euk” 
database integrates viruses, microbial eukaryotes, and 
eukaryota; MetaPhlAn3 includes Eukaryota; and Kraken2 
“plus-pf ’’ adds viruses, plasmid, Univec_core (for vector 
contamination screening), and protozoa. Our Kraken2 
(custom) database further incorporates phyla Basidi-
omycota, Ascomycota, and Mucoromycota to reflect our 
in-silico community and to partially capture the fungal 
diversity in soil. For a concise overview of each classifi-
er’s characteristics and performance metrics, see Table 1. 
In this section, we delve into the implications of rela-
tive abundance threshold, classifier selection, and contig 
assembly in taxonomic classification.

Influence of relative abundance threshold
Initially, we evaluated whether the introduction of a min-
imum relative abundance threshold impacted the overall 
performance of each classifier at species and genus level 
classification, using classic model performance met-
rics such as considering the F1 score, sensitivity, and 
precision.

In assessing classifier performance, Kraken2 (both 
default and custom) and MetaPhlAn’s F1 scores remained 
stable at a low relative abundance threshold for both 
species and genus levels (Fig.  3). Most classifiers dem-
onstrated optimal performance at a relative abundance 
threshold of 0.001% with Kraken2 (custom) registering an 
F1 score of 0.68 + / − 0 and MetaPhlAn3 at the lower end 
with 0.26 + / − 0.02. Kraken2 (default), however, reached 
its highest performance at 0.005% with an F1 score of 
0.74 + / − 0 0.01. Beyond these optimal points, F1 scores 
began to diminish. Overall this indicates that an optimal 
relative abundance threshold varies by classifier and data-
base combination. This is important as certain classifiers 
and databases excel at identifying species that are present 
in low quantities, which can be crucial in soil metagen-
omics, where low-abundance organisms can play funda-
mental roles in the dynamics of microbial communities 
and ecosystems.

To investigate the factors affecting F1 scores, we exam-
ined precision and sensitivity by species. Among clas-
sifiers, Kraken2 (custom), Kraken2 (default), and Kaiju 
often provided a high number of false positives, resulting 
in reduced precision. However, their robust sensitivity, 
characterized by minimal false negatives (see Fig.  3c, d; 
Additional file 1: Fig. S1a, b), compensates for this short-
fall in precision. On the other hand, MetaPhlAn 3 and 4 
performed with acceptable precision but poor sensitivity, 
placing them at a relative disadvantage when compared 
to the other classifiers (Fig. 3).

We identified significant differences in the perfor-
mance metrics F1 score across different classifiers and 

https://lomanlab.github.io/mockcommunity/mc_databases.html
https://lomanlab.github.io/mockcommunity/mc_databases.html
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different thresholds (p-value < 0.001). These differences 
became particularly noticeable when we grouped the 
thresholds and compared the performance of classifiers 

against each other. Dunn’s post-hoc test indicated that 
MetaPhlAn’s performance was significantly different to 
other classifiers. A higher z-value means that the two 

Fig. 3 Average F1 scores at species and genus levels (a and b, top row) alongside precision and sensitivity metrics at species level (c and d; bottom 
row) for various classifiers on the in-silico dataset at different relative abundance thresholds. Each plot displays the median with ribbon plots 
indicating the range of standard deviation
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groups are further apart in terms of standard deviation. 
In our results, Kraken2 (default) vs. MetaPhlAn3 had 
a z-value of 9.05 (p-value < 0.001), Kraken2 (custom) 
vs. MetaPhlAn3 with a z-value of 7.63 (p-value < 0.001), 
Kraken2 (default) vs. MetaPhlAn4 with a z-value of 5.6 
(p-value < 0.001), and Kraken2 (custom) vs. MetaPhlAn4 
z = 4.2 (p-value < 0.001). Comparing MetaPhlAn3 and 
MetaPhlAn4, a difference with z = 3.4 (p-value < 0.01) 
was observed. In contrast, no significant differences were 
noted between Kaiju and both MetaPhlAn3 and 4. These 
findings highlight MetaPhlAn’s markedly different per-
formance from the other classifiers evaluated (Table 1).

Regarding relative abundance thresholds, a post hoc 
Dunn test—applied across all classifiers and samples to 
isolate the impact of threshold values—indicated that 
the values at extreme thresholds tested, notably 0, 0.05%, 
0.1%, and 0.5%, exhibited significant variations in F1 
score when compared to other threshold settings (Addi-
tional file 2: Table S2). Balancing precision and sensitiv-
ity necessitates the selection of optimal classifiers and 
thresholds for soil shotgun metagenomic data. Our anal-
ysis identifies the optimal relative abundance threshold of 
0.001% for Kraken2 (custom), Kaiju, and MetaPhlAn, and 
0.005% for Kraken2 (default) at the species level (Fig. 3).

Role of taxonomic classifiers in estimating species‑level 
relative abundance
By using the optimal relative abundance threshold, we 
examined the community structure and tested whether 
species’ relative abundances were deviating from 
expected values. To do this, we employed Multidimen-
sional Scaling (MDS) to identify which classifiers could 
accurately discern the in-silico community structure and 
report relative abundance values that align with expected 
values. Applied to the compositional data, MDS con-
firmed marked variations between different classifiers 
(PERMANOVA: p-value = 0.001,  R2 = 0.79) (Fig.  4a). 
The classifier accounted for approximately 80% of the 
observed variance in microbial community composition.

In assessing classifier accuracy at the species level using 
the Euclidean distance between observed and expected 
outputs, Kraken2 (custom) consistently demonstrated 
superior performance in comparison to other classifiers. 
The Kruskal–Wallis tests, conducted to compare distance 
values among different classifiers across the runs, con-
sistently pointed to significant differences. Specifically, 
for each run, the effect size (H-value) was large, rang-
ing from approximately 0.902 to 0.950. The p-values for 
all runs varied between 0.05 to 0.001, emphasizing the 
robustness of these results (Additional file 2: Table S3a). 
A post-hoc Dunn test with Bonferroni adjustment dem-
onstrated that Kraken2 (custom) differed significantly 
from Kaiju, MetaPhlAn4, and MetaPhlAn3 across all 

10 runs (p-value range < 0.001–0.01], H-value range: 
[3.92–8.6]; Additional file  2: Table  S3b). In these runs, 
Kaiju also significantly varied from MetaPhlAn3 (p-value 
range < 0.001, H-value range: [3.97–4.47]) and exhibited 
differences from MetaPhlAn4 in one run (p-value: < 0.01, 
H-value [2.93]). The distinctiveness of Kraken2 (default) 
from both MetaPhlAn3 and MetaPhlAn4 was evident 
throughout the ten runs. Figure 4b provides a visual rep-
resentation of these average distances for each classifier 
in the form of a box plot.

Understanding the unique methodologies employed 
by each classifier is crucial. While MetaPhlAn3 utilizes a 
DNA-to-Marker technique, emphasizing taxon genome 
counts, Kraken2 and Kaiju underscore sequence abun-
dance over taxonomic distinction via their DNA-to-DNA 
and DNA-to-Protein strategies, respectively. Notably, 
when no cut-off was applied, MetaPhlAn3’s results sub-
stantially deviated from expected values. Nevertheless, 
the Euclidean distances for MetaPhlAn3 remained con-
sistent, regardless of the relative abundance threshold 
of 0.001. Such uniformity of MetaPhlAn suggests the 
relative abundance threshold limited influence on the 
taxonomic abundance precision, which is supported by 
comparable F1 scores at both levels (Table 1).

Comparative efficiency of classifiers in metagenomic 
short‑read utilization
In our analysis comparing the efficiency of various tax-
onomic classifiers in read classification, we found that 
on average, across ten separate runs, the classification 
rate was 99.54% with Kraken2 (custom), 63% with Kaiju, 
21% with Kraken2 (default) and 5–10% with MetaPhlAn 
(Table 1) in diverse simulated sequencing libraries. This 
underscores the superior efficiency of Kraken2 (custom) 
in maximizing sequencing output value. While one might 
assume a high percentage of unclassified reads indicates 
a vast array of unidentified species, it’s essential to recog-
nize that this can often be a consequence of the selected 
classifier and database. Therefore, these figures might not 
truly reflect the sample’s diversity, but rather the limita-
tions or specificity of the analytical tools used. Although 
Kraken2 (custom) provides the closest values (very low 
Euclidean distance) to the expected relative abundance 
values at the species level, it is not statistically signifi-
cant from Kraken2 (default). Despite their similar perfor-
mance in identifying relative abundance values, Kraken2 
(custom)vastly outperforms Kraken2 (default) by classify-
ing 99% of reads compared to Kraken2 (default) 21%. This 
underscores a distinct discrepancy in their ability to ana-
lyse sequencing data, clearly attributed to the underlying 
databases each employs, given the constant classifier and 
algorithm.
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Fig. 4 Compositional analysis of in-silico data across classifiers. a Dissimilarity plot illustrating species-level community profiling deviations 
from expected among different classifiers. b Boxplot of Euclidean distances comparing observed to expected species level relative abundance 
for different classifiers. Both visual representations indicate that Kraken2 (custom) offers the closest approximation to the epected species 
community profile
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Assembled vs. unassembled reads: evaluating the optimal 
approach
Contigs, with their longer sequences and assembly from 
multiple reads, promise enhanced specificity in taxo-
nomic classification. Their historical relevance and ana-
lytical efficiency further positioned them as potential 
candidates for taxonomy assignments. To analyse this 
we selected five random runs from the sequenced data 
to assemble with Spades, followed by classification using 
the three top-performing classifiers; this facilitated a 
detailed comparison between the default unfiltered tax-
onomic profiles, those adjusted to their optimal relative 
abundance thresholds, and the taxonomic profile of the 
assembled contigs. Using the Kruskal–Wallis test, we 
compared the F1 scores of taxonomic classifications on 
assembled contigs versus trimmed reads (at optimal rela-
tive abundance threshold for species-level classification). 
For both versions of the Kraken2 (default and custom) 
classifier implementation, the observed F1 score was 
lower for assembled contigs than trimmed reads with 
and without a relative abundance threshold filter. Not-
withstanding this, the relative abundance threshold in 
conjunction with Kaiju favoured contigs. From the per-
spective of classifier performance, we observed signifi-
cant variations in F1 scores between the two read types: 
Kaiju (p-value < 0.01), Kraken2 (default) (p-value < 0.01), 
and Kraken2 (custom) (p-value < 0.01). However, upon 
applying optimal relative abundance threshold filters, 
trimmed reads consistently outperformed contigs across 
all classifiers in terms of F1 scores and precision. Notably, 
sensitivity declined at these optimal relative abundance 
thresholds, suggesting an increased likelihood of false 
negatives (Additional file 1: Fig. S2). In summary, the use 
of assembly-based methods to assess taxonomic diversity 
resulted in a reduction in classification accuracy.

Evaluating taxonomic misclassifications across different 
classifiers
While our efforts have been directed towards ascertain-
ing the superiority of specific classifiers under given con-
ditions, it is equally crucial to investigate what remains 
undiscovered or erroneously identified in the course of 
our investigations.

The chi-square statistical analysis substantiated a sig-
nificant divergence in the family-level taxonomic clas-
sifications generated by the four evaluated classifiers, 
reflecting notably distinct patterns in the identification 
of true positives, true negatives, false positives, and false 
negatives across the families picked by each classifier (χ2 
statistic = 135,543–4395.4, p-value < 0.001) [detailed in 
Additional file  2: Table  S4 and illustrated in Additional 
file 1: Fig. S3]. The divergence suggests that the observed 
taxonomies at the family level are profoundly influenced 

by the choice of classifier, rather than being an accurate 
representation of the actual sample profile. This finding 
emphasizes the need for researchers to treat the interpre-
tation of taxonomic data with caution, as the choice of 
classifier can have a significant impact on the biological 
interpretations and conclusions that are drawn.

To further examine the distribution of false positives 
(FP’s) and false negatives (FN’s) at higher taxonomic cat-
egories like family level, we employed Venn diagrams 
and heatmaps. The Venn diagrams depict an interesting 
inverse relationship between FPs and FNs. Notably, while 
Kraken2 (custom), Kraken2 (default), and Kaiju are major 
contributors to FPs, their influence on FNs is consider-
ably smaller, often overlapping with MetaPhlAn4. Con-
versely, MetaPhlAn demonstrates fewer unique FPs but a 
larger number of unique FNs (Figs. 4b and 5a).

Heatmaps emphasize the divergence amongst classifi-
ers in terms of false positive detection. Kaiju adeptly iden-
tified Fungi without registering any FNs, yet provided a 
significant number of FPs specifically for fungal families. 
Conversely, Kraken2 (default) exhibited the opposite 
trend with fewer fungal FPs but a notable number of FNs. 
An increase in FPs can be observed when the underlying 
database has sequences outside the mock community’s 
makeup, leading to misclassifications in kingdoms like 
Viridiplantae, Chromista, Metazoa, and Viruses. Kaiju’s 
misclassifications and Kraken2 (default) consistent errors 
in the Chromista and Hominidae families further illus-
trate this. To improve accuracy in sequence data analysis, 
it might be beneficial to use databases mainly consisting 
of sequences from the targeted microbes, specific to the 
research environment (for instance, excluding terres-
trial mammal sequences in marine microbiome studies). 
This approach could enhance classification precision, 
although it may narrow the scope of the investigation. 
Kraken2 (custom), however, strikes a balance with the 
fewest FPs but misses certain families like Bdellovibrion-
aceae and Rhodobacteraceae (see Additional file  1: Fig. 
S2; Fig. 3).

In terms of true positives, MetaPhlAn4 predominantly 
detected common family hits, while Kraken2 (default), 
Kraken2 (custom), and Kaiju had additional shared detec-
tions. The varied counts among classifiers, with Kraken2 
(custom) and Kaiju spotting unique families, highlight 
the differential efficiency of these tools in true positive 
identifications (Additional file 1: Fig. S1(d)).

Refining biological insights with optimized taxonomic 
classification
In our analysis of the NovaSeq soil dataset, we utilized 
the Kraken2 (custom) classifier, informed by our earlier 
in-silico evaluations. The real metagenome dataset used 
for this study was obtained from a previous study by 
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Mantri et al. 2021 [1] encompassing seven soil metagen-
omes from samples collected from soil horizons of mul-
tiple forest sites in Germany. Our comparative analysis 
with the original study, which employed maxikraken, 
revealed a notable difference in both the identified phyla 
and the classification of reads. Our analysis resulted in an 
average of 58% classified reads, a marked improvement 
from the 47.04% reported in the original study. This vari-
ation in read classification percentages underscores the 
inherent challenge of microbial identification in com-
plex soil matrices. Nevertheless, both methods identified 
prominent soil phyla such as Planctomycetota, Actinomy-
cetota, Chloroflexota, Pseudomonadota, and others.

Two deviations were prominent. Cambisol_B had a 
higher number of reads assigned to Chloroflexota pres-
ence with Kraken2 (custom) compared to maxikraken 
results. Despite similar levels of Actinomycetota and 
Pseudomonadota, we detected increased proportions of 
Acidobacteriota and Ascomycota across all samples. Our 
reanalysis, utilizing the Kraken2 (custom) also enabled 
the identification of several phyla—Gemmatimonadetes, 
Candidatus Calescamantes and Nitrospirota—which 
notably emerged among the top phyla in our study, but 
were not identified as prominent phyla in the original 
study (Fig. 6).

The beta diversity of microbial communities across 
seven soil samples reaffirmed our in-silico observations. 
On examining species-level distinctions, the NMDS 
plot revealed that the Kaiju and Kraken2 (custom) tools 
tended to cluster together, potentially due to the shared 
utilization of Metagenome Assembled Genomes (MAGs) 
in their respective databases, as depicted in (Additional 

file 1: Fig. S7(a)). Additionally, PERMANOVA (adonis2) 
analysis indicated that both the sample site (R2 = 12.3%, 
p < 0.01) and the taxonomic tool used (R2 = 85.09%, 
p < 0.001) influenced diversity at the species level. Addi-
tional PERMANOVA (adonis2) analysis was conducted 
to determine whether this was also observed at the genus 
level. Consistent with the species-level findings, the 
results affirmed the significant impact of both the sam-
ple site and the taxonomic tool on genus-level diversity, 
explaining 18.46% (p = 0.001) and 77.5% (p = 0.01) of the 
variance, respectively, as illustrated in (Additional file 1: 
Fig. S7(b)). Clearly, classifiers have a stronger influ-
ence on microbial profiles than the inherent soil com-
position, once again emphasizing the importance of 
benchmarking.

Discussion
In this study, we employed the latest versions of three 
metagenomic taxonomy classification tools: MetaPhlAn, 
Kaiju, and Kraken2. Our findings illustrate that varia-
tions in classification tools, parameters, and databases 
can substantially affect both the percentage of classified 
reads and the diversity of identified species, as detailed 
in Table  1. Here, we aimed to enhance the accuracy of 
species-level classification, reflecting the true complex-
ity of soil microbiomes. We analysed different relative 
abundance thresholds, classifiers, and input data types 
(contigs or trimmed reads) using various simulated soil 
datasets. Our findings indicate that the Kraken2 tool was 
most effective when combined with Bracken at a rela-
tive abundance threshold of 0.001% (Figs. 3 and 4). This 
optimum performance was further enhanced by selecting 

Fig. 5 Venn diagram illustrating differential false positives (a) and false negatives (b) by classifiers at family level. The Venn diagrams show 
an inverse relation between FP’s and FN’s. The Kraken2 (custom), Kraken2 (default), and Kaiju lead in FP’s but have minimal FN’s, often aligning 
with MetaPhlAn4. Meanwhile, MetaPhlAn4 exhibits fewer FP’s but more unique FN’s
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a database that encompasses the pertinent kingdoms 
under investigation and utilizing trimmed reads for clas-
sification (Additional file 1: Fig. S2).

In line with our in-silico evaluations, the use of Kraken2 
(custom) in analysing real-world NovaSeq soil dataset 
[33] led to distinct findings compared to the original 
study using maxikraken. Specifically, our analysis yielded 
an average of 58% classified reads, an improvement over 
the 47.04% in the original study that utilized maxikraken. 
Additionally, we identified key phyla, including Gemma-
timonadetes, Nitrospirota, Basidiomycota and Candida-
tus Calascamantes, which did not appear in the original 
study’s list of dominant phyla (Fig. 6). The elevated pres-
ence of the Gemmatimonadetes phylum in our data aligns 
with findings from other research where it was recog-
nized as a significant component of the forest soil micro-
biome [34, 35]. Further, the Nitrospirota phylum, which 
is prominently represented in our dataset, has been high-
lighted in recent research for its role in soil nitrification 
through complete ammonia-oxidizers. Importantly, beta 
diversity analysis affirmed the influence of the classifier 
choice on microbial profiles, even exceeding the effects of 
soil composition (Additional file 1: Fig. S7(a)).

In line with previous research, MetaPhlAn underper-
formed when applied to soil microbiome data, thereby 
suggesting it might be unsuitable for analysing soil 

metagenome data [32]. Echoing the findings of Ye et  al. 
[36] and Govender et  al. [37], our research found that 
the DNA-to-DNA classifier, notably the combination 
of Kraken2 and Bracken, delivers superior precision, 
recall, and abundance estimates compared to the DNA-
to-protein-based classifier (Kaiju) and the marker-gene 
classifier (MetaPhlAn). In the context of our study, the 
improvement in the F1 score as well as the Euclidean dis-
tance we observed by utilizing the Kraken2 classifier may 
have been potentially influenced by Bracken’s capability 
to redistribute reads from intermediate taxonomic levels, 
as suggested by previous studies using Illumina data [30, 
36].

In addition, our findings differ from prior studies, par-
ticularly regarding minimum relative abundance thresh-
olds and the use of assembled contigs for taxonomic 
analysis. The current study observed a decline in F1 score 
at relative abundance thresholds of 0.5% and 0.1%, in 
contrast to the recommendations made by Ye et al. 2019. 
Although the filtration of low-abundance taxa has been 
advocated to mitigate false positives in shotgun metagen-
omic data [14, 19], our findings indicate that higher 
thresholds could potentially neglect critical low-abun-
dance taxa integral to soil microbiomes. The ecological 
importance of rare taxa has recently been highlighted 
[37–39] and keeping a high relative abundance threshold 

Fig. 6 Comparative microbial composition across three sampling sites and soil horizons at the phylum Level. a Bar plot representing 
the taxonomic profile of the shotgun dataset using Kraken2 (custom). b Bar plot illustrating the taxonomic profile of the shotgun dataset 
as derived from the original study. Both plots showcase the top 14 phyla with distinct colours, while the remaining phyla are collectively grouped 
as “Remainder”. Consistent colour schemes are used across both plots for the same phyla. The x-axis delineates the three sampling sites (Podsol, 
Cambisol, and Stagnosol) and is further segmented into the three soil horizons (O, A, and B) for each site
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might limit the sensitivity of the analysis. Similarly, while 
previous studies recommend the use of assembled con-
tigs [20], our study found that utilizing trimmed reads 
yielded more accurate taxonomic analyses. Discrepancy 
may result from difficulty in assembling contigs when 
high strain diversity and low abundance species are pre-
sent in a sample, leading to low coverage of strains [40]. 
In many instances, assembly algorithms discard these 
rare genomic fragments, thereby failing to accurately 
capture these elusive taxa. Thus, bioinformatic guide-
lines must be applied carefully, taking into account the 
ecological complexities of different samples such as soil 
or marine environments, rather than directly adopting 
strategies based on clinical studies. Given these obser-
vations, we suggest employing lower relative abundance 
thresholds, precisely 0.001 or 0.005, during the analysis of 
highly complex microbial communities from soil samples 
to ensure more accurate results.

Interestingly, our study revealed that popular classifi-
ers such as Kraken2 (default) (database: “pluspf”), Kaiju 
(database: “nr-euk”), and MetaPhlAn3 and 4, left a sub-
stantial proportion of reads unclassified—even using an 
in-silico sequenced data generated from known NCBI 
genomes. This observation challenges numerous stud-
ies where high levels of unclassified reads have been 
interpreted as indicators of microbiome novelty. The 
limitations of these classifiers further underscore the 
importance of in-silico studies, which provide a con-
trolled environment for benchmarking.

A critical challenge in benchmarking studies is the 
continual evolution of the NCBI taxonomic database. 
The classifiers Kaiju and Kraken2 (custom) used in the 
current study incorporates Metagenomic Assembled 
Genomes (MAGs) in their underlying databases, which 
currently feature unique, transitioning, species identifiers 
facilitated through SeqCode [41–43]. There is a neces-
sity to carefully select the database in alignment with the 
specific sample at hand; particularly, soil matrices which 
harbour a multitude of uncultured organisms that might 
necessitate the integration of MAGs in their analysis, to 
ensure heightened classification accuracy [44]. A future 
study could explore the impact of adding MAGs to the 
databases on classification accuracy since emerging evi-
dence suggests that MAGs can contribute significantly 
to the exploration of highly complex ecosystems such as 
soils [44–46]. Compounding this challenge is the cur-
rent reliance of Kraken2 databases on RefSeq [47], which 
presently does not incorporate MAGs, potentially hin-
dering performance in environments with low-reso-
lution databases like the soil we have investigated here. 
This indicates a potential need for custom databases to 
enhance classification accuracy, despite Kraken2’s nota-
ble effectiveness as a classifier (Fig. 4) [36, 48].

Limitations of the current study
A significant constraint of the present study is the varia-
tion in the underlying databases applied in the different 
classifiers, which impedes a direct comparison to ascer-
tain the best classification algorithm for the analysis. 
Creating such expansive databases with specific classifi-
ers presented significant technical hurdles. This limited 
the application of other powerful tools like DIAMOND 
[49] and Kaiju [28]. Constructing a large custom database 
using GTDB-TK genomes illuminated that there was a 
clear cost–benefit trade-off between the comprehensive 
scope of the database and the efficiency of the classifier. 
Although it was easy to set up a custom database with 
DIAMOND, its lengthy runtime per sample—about a 
day on average—made it impractical for our study (for a 
detailed comparison of classifier timings please refer to 
Table 1. Whereas, developing a custom database for Kaiju 
demanded considerable computational resources, bioin-
formatics expertise, and time, constraints that rendered 
it unfeasible for us to accomplish in this study. Overall, 
our experience underscored the accessibility and user-
friendliness of Kraken2, not only as an optimal choice 
with a customized database but also proving its efficacy 
with the default database, which emerged as the second-
best performer in our study. This dual success establishes 
Kraken2 as a highly preferable option for bioinformatics 
beginners, offering a less technically demanding pathway 
to obtain reliable and precise results.

A second concern in metagenome analysis is the 
database and the bias inherent in each classifier. In our 
study, a notable anomaly was the high incidence of false 
positives for human contamination reported by Kraken2 
(default)—averaging at 14.9% (+ / − 4.83 SD) at the genus 
level—when using its default "plus-pf" database. While a 
recent study indicated that parts of the human genome 
mistakenly categorized as bacteria in the NCBI could 
cause false identifications [50], our observations sug-
gest that in our case, the increased false positives are 
primarily due to the inclusion of human genomic reads 
in the Kraken2 (default) database, an issue not identified 
with other classifiers as they do not incorporate human 
genomes in their database. Hence, researchers must exer-
cise caution when analysing the results from Kraken2 to 
avoid incorrect associations with human genomic signals.

It is important to note that while our study focuses on 
the differences in taxonomic classification tools using real 
soil samples, these samples were collected from forested 
areas in close proximity to each other. Observing the 
substantial impact of classifier choice in this context, we 
postulate that classifier choice would manifest similarly 
across varied soil environments including those in arid, 
grassland, and arctic regions. We hypothesise a dual-lay-
ered clustering where environmental characteristics and 
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the classifier used would significantly influence micro-
bial profiling. We anticipate that samples would cluster 
both by their environmental context and by the taxo-
nomic tool employed, with the latter possibly being the 
dominant clustering factor. However, this hypothesis is 
extending beyond our study’s scope, and future research 
is needed to explore this dual influence and to validate 
the hypothesis across diverse ecosystems.

Conclusion
In summary, the accuracy of microbial taxonomic pro-
filing largely depends on the choice of classifier and 
database; often, "unclassified" results may be due to limi-
tations in these tools rather than true representations of 
environmental novelty. Kraken2 (custom) deployment 
in the real data set revealed distinct findings of taxa not 
picked by maxikraken, and given our benchmarking, 
stands as a dependable tool for shotgun metagenom-
ics of the soil microbiome. In  situations where compu-
tational resources are limited, utilizing Kraken2 with an 
updated database and adjusting parameters to match the 
study’s objectives can be a viable alternative. Our findings 
demonstrate the pressing requirement for more com-
prehensive benchmarking studies, which are tailored to 
accommodate the distinct characteristics of varying envi-
ronments or sample types.
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