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Abstract

The tenacious association between strains of the heterotrophic alphaproteobacterial genus Acidiphilium and
chemolithotrophic iron oxidizing bacteria has long been known. In this context the genome of the heterotroph
Acidiphilium sp. JA12-A1, an isolate from an iron oxidizing mixed culture derived from a pilot plant for bioremediation
of acid mine drainage, was determined with the aim to reveal metabolic properties that are fundamental for the
syntrophic interaction between Acidiphilium sp. JA12-A1 and the co-occurring chemolithoautotrophic iron oxidizer.
The genome sequence consists of 4.18 Mbp on 297 contigs and harbors 4015 protein-coding genes and 50 RNA
genes. Additionally, the molecular and functional organization of the Acidiphilium sp. JA12-A1 draft genome was

compared to those of the close relatives Acidiphilium cryptum JE-5, Acidiphilium multivorum AIU301 and Acidiphilium
sp. PM DSM 24941. The comparative genome analysis underlines the close relationship between these strains and
the highly similar metabolic potential supports the idea that other Acidiphilium strains play a similar role in various

acid mine drainage communities. Nevertheless, in contrast to other closely related strains Acidiphilium sp. JA12-A1
may be able to take up phosphonates as an additional source of phosphor.
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Introduction

Strains of the alphaproteobacterial genus Acidiphilium
have first been isolated from supposed pure cultures of iron
oxidizing bacteria such as Acidithiobacillus ferrooxidans [1].
Later on, Acidiphilium spp. have also been identified as
characteristic members of the microbial communities in
acid mine drainage and mining associated water bodies [2—
5]. Although the physiological role of these heterotrophic
acidophiles within the microbial community has not yet
been completely elucidated, the tenacious association be-
tween them and the chemolithoautotrophic iron oxidizers
has often been reported to be problematic for the isolation
of the iron oxidizing bacteria [1, 6, 7]. Several attempts have
been undertaken to investigate the interaction between the
iron oxidizing bacterium Acidithiobacillus ferrooxidans
and Acidiphilium spp. In a co-culture with Acidiphilium
acidophilum the increased growth rate and ferrous iron
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oxidation rate of Acidithiobacillus ferrooxidans have indi-
cated a stimulating influence of Acidiphilium acidophilus
on Acidithiobacillus ferrooxidans [8]. A stable isotope probe
based proteome analysis of an Acidithiobacillus ferrooxi-
dans/Acidiphilium cryptum mixed culture has revealed car-
bon dioxide transfer from the heterotroph to the iron
oxidizing bacterium [9]. Based on the absence of organic
carbon and energy sources in the cultivation media of iron
oxidizing bacteria it has been suggested that Acidiphilium
spp. benefit in turn from secreted metabolites and rem-
nants of the biomass from the iron oxidizers by utilizing
them as carbon and energy sources [10-12].

Since such an interaction is not only relevant for the
isolation and cultivation of iron oxidizing bacteria but
also for the general understanding of the ecology of mi-
crobial communities in AMD, we were interested in elu-
cidating the potential of Acidiphilium for such a
syntrophic interaction. Therefore we sequenced and ana-
lyzed the genome of Acidiphilium sp. JA12-A1 with spe-
cial focus on transport systems for the uptake of
nutrients, the pathways of nutrient assimilation and the
general energy metabolism. The resulting permanent
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draft genome was also compared to the genomes of the
close relatives Acidiphilium cryptum JE-5, Acidiphilium
multivorum AUI301 and Acidiphilium sp. PM DSM
24941 regarding the genome structure and the func-
tional organization.

Organism Information

Classification and features

Strain Acidiphilium sp. JA12-Al was detected as the hetero-
trophic contamination in the mixed culture JA12 of a novel
chemolithoautotrophic iron oxidizing bacterium [13], which
is related to “Ferrovum myxofaciens” P3G [7, 14]. The iron
oxidizing mixed culture originated from a pilot plant for the
biological remediation of AMD close to a lignite mining site
in Lusatia, Germany [5, 13, 15]. Acidiphilium sp. JA12-A1
was isolated from the mixed culture by cultivation in SJH
medium [16, 17] (Table 1, Additional file 1).

Page 2 of 10

The complete 16S rRNA gene sequence of Acidiphi-
lium sp. JA12-A1 was compared to the non-redundant
nucleotide collection of the NCBI using NCBI Mega-
BLAST [18, 19]. The analysis of the 100 best hits
revealed a sequence similarity of 99 % to 16S rRNA gene
fragments of Acidiphilium multivorum AUI301, Acidi-
philium cryptum JE-5, Acidiphilium organovorum TEC,
Acidiphilium sp. SJH, and “Acidiphilium symbioticum”
and others, and a sequence similarity of 95 % to Acidi-
philium acidophilum MS Silver, Acidiphilium angustum
ATCC 35903 and Acidiphilium rubrum. These gene
fragments also formed the basis for the calculation of a
dendrogram illustrating the phylogenetic neighborhood
of Acidiphilium sp. JA12-A1 (Fig. 1).

The 16S rRNA gene sequences cluster into two
distinct subgroups within the genus Acidiphilium. The
novel strain Acidiphilium sp. JA12-Al belongs to

Table 1 Classification and general features of Acidiphilium sp. JA12-A1 [32]

MIGS ID Property

Classification

Gram stain

Cell shape

Motility

Sporulation
Temperature range
Optimum temperature
pH range; Optimum

Carbon source

MIGS-6 Habitat

MIGS-6.3 Salinity

MIGS-22 Oxygen requirement
MIGS-15 Biotic relationship
MIGS-14 Pathogenicity
MIGS-4 Geographic location
MIGS-5 Sample collection
MIGS-4.1 Latitude

MIGS-4.2 Longitude

MIGS-44 Altitude

Term Evidence code®
Domain Bacteria TAS [32]
Phylum Proteobacteria TAS [33-35]
Class Alphaproteobacteria TAS [34, 36]
Order Rhodospirillales TAS [37, 38]
Family Acetobacteraceae TAS [39, 40]
Genus Acidiphilium TAS [2, 41, 42]
Species Acidiphilium sp. TAS [2]
Strain: JA12-A1 TAS 2]
Negative NAS

Rod IDA

Motile IDA

Not reported

Mesophile NAS

30°C NAS

Not reported

Heterotroph (galactose, glucose, tryptic soy broth, NAS
fructose, yeast extract)

Acid mine drainage NAS

Not reported

Aerobic, anaerobic NAS
Free-living NAS
Non-pathogen NAS
Lignite mining site, Lusatia, Germany NAS

2011 NAS
51°28'1038"N NAS
14°28'22.19" E NAS

12545 m NAS

“Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author
Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These

evidence codes are from the Gene Ontology project [43]
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Acidiphilium multivorum strain AlU301 (NC_015186)

Acidiphilium sp. PM DSM 24941 (AFPR01000512 )
82 | Acidiphilium cryptum JF-5 (NC_009484)
Acidiphilium cryptum strain Lhet2 (NR_025851)
99 Acidiphilium sp. SJH (AY040740)

Acidiphilium sp. JA12-A1 (JFHO00000000)

Acidiphilium organovorum TFC (NR_025853)
Acidiphilium symbioticum (AY632901)

00— Acidiphilium acidophilum strain MS Silver (NR_036837)
99 | Acidiphilium rubrum (D30776)
Acidiphilium angustum ATCC 35903 (D30772)
100 ——— Acidocella aminolytica (D30771)
L Acidocella facilis (D30774)

L |

0.005
Fig. 1 Dendrogram of strains of the genus Acidiphilium - based on partial 165 rRNA gene sequences. The dendrogram was calculated with
MEGAS [20] using the Maximum Likelihood method based on the Jukes-Cantor model [21]. The analyzed sequences were aligned by CLUSTALW
[22]. The clustering of the sequences was tested by the bootstrap approach with 1000 repeats. The length of the tree branches was scaled
according to the number of substitutions per site (see size bar). All strains used in the analysis, except Acidiphilium cryptum JF-5 and Acidiphilium
sp. SJH, are type strains of their respective species [23-30] with Acidiphilium cryptum representing the genus Acidiphilium as the designated type
species [2]. Acidocella aminolytica (D300771) and Acidocella facilis (D30774) were used as outgroup. The 16S rRNA gene sequence for Acidiphilium
sp. PM DSM 24941 can be found under the locus tag APM_R0045 on contig Ctg_00688 (AFPR0O1000512) of the whole genome shotgun
sequence. Whole genome sequences are only available for Acidiphilium cryptum JE-5, Acidiphilium multivorum AlU301, Acidiphilium sp.
PM DSM 24941 and Acidiphilium angustum ATCC 35903 (GOLD project IDs: Gc00559, Gc01862, Gi09776, Gi0051610; accession numbers:

NC_009484, NC_015186; AFPR00000000, JNJHO0000000)

the same subgroup as Acidiphilium cryptum JF-5,
Acidiphilium multivorum AIU301 and Acidiphilium
sp. PM DSM 24941.

In terms of physiological features Acidiphilium sp.
JA12-A1 appears to be closely related to the type strain
Acidiphilium cryptum Lhet2 [2]: Acidiphilium sp. JA12-A1
is a Gram-negative, rod-shaped (ca. 1.9 um x 0.7 pm), mo-
tile alphaproteobacterium, which lives under acidophilic
conditions. It has a chemoorganotrophic lifestyle grow-
ing with galactose, fructose, yeast extract and soy broth
as growth substrates. In the mixed culture with the iron
oxidizer “Ferrovum” sp. JA12 [31] the proportion of
Acidiphilium sp. JA12-Al was estimated by terminal

restriction fragment length polymorphism (T-RFLP)
analysis to vary between 1 % and 50 % depending on
the ferrous iron concentration and growth phase
(unpublished results). An electron micrograph of
Acidiphilium sp. JA12 is provided in Fig. 2.

Genome sequencing information

Genome project history

The genome of Acidiphilium sp. JA12-A1l was sequenced
to obtain genetic information on physiological properties
that may play a fundamental role in its tenacious associ-
ation with the co-occurring iron oxidizing bacterium in
the mixed culture JA12. The permanent draft genome

Fig. 2 Transmission electron micrograph of Acidiphilium sp. JA12-A1 (ultrathin section, post-staining with 4 % uranyl acetate). PHB granula are
marked by asterisks. The cells were harvested at the beginning of the fast growth phase
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sequence is available at the NCBI with the accession
number JFHO00000000 (genome project number 238988).
The cultivation and genome sequence analysis was
undertaken at the TU Bergakademie Freiberg while
the genome sequencing and annotation was performed
at Gottingen Genomics Laboratory (G,L). Table 2 pro-
vides a summary of the project information according
to MIGS compliance [32].

Growth conditions and genomic DNA preparation
Acidiphilium sp. JA12-A1l was cultivated in liquid SJH
medium [16, 17] at 30 °C. It was continuously shaken
on a rotary shaker at 120 rpm. The cells were harvested
by centrifugation at 10,000 x g. The DNA was isolated
using the Ultra Clean™ Microbial DNA Isolation Kit
(MoBio, Carlsbad, CA) according to the manufacturer’s
instructions.

Genome sequencing and assembly

Genome sequencing of Acidiphilium sp. JA12-Al was
performed via a hybrid approach using the 454 GS-FLX
TitaniumXL system (Titanium GS70 chemistry, Roche
Life Science, Mannheim, Germany) and the Genome
Analyzer II (Ilumina, San Diego, CA). Shotgun libraries
were prepared according to the manufacturer's proto-
cols, resulting in 126,343 reads for 454 shotgun and
10,136,209 112-bp paired-end Illumina reads. We used
all 126.343 454 shotgun reads and 3,000,000 of the 112-
bp paired-end Illumina reads for the initial hybrid de-
novo assembly, which was calculated using the MIRA 3.4

Table 2 Project information
MIGS ID
MIGS 31
MIGS-28

Property Term

Finishing quality Improved high-quality draft

Libraries used Two genomic libraries: 454
pyrosequencing shotgun library,
[llumina paired-end library

(1 kb insert size)

MIGS 29 Sequencing platforms 454 GS FLX Titanium, Illumina GAIl
MIGS Fold coverage 18.7 X 454, 54.8 x lllumina
31.2
MIGS 30 Assemblers Newbler 2.8, MIRA 34
MIGS 32 Gene calling method YACOP, Glimmer

Locus Tag ACIDI

Genbank ID JFHO01000000

GenBank Date of 2014-05-20

Release

GOLD ID Gi0008223

BIOPROJECT PRINA238988
MIGS 13 Source Material TU BAF Acidi

|dentifier

Environmental and
biotechnological

Project relevance
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[44] and Newbler 2.8 (Roche Life Science, Mannheim,
Germany) software. The final assembly contained 297
contigs with a 73.5-times coverage on average.

Genome annotation

The software tools YACOP and Glimmer [45] were used
for automatic gene prediction, while identification of
rRNA and tRNA genes was performed using RNAmmer
and tRNAscan, respectively [46, 47]. An automatic anno-
tation was performed within the integrated microbial
genomes-expert review (IMG-ER) system [48, 49] and
subsequently curated manually by using the Swiss-Prot,
TrEMBL, and InterPro databases [50].

Genome Properties

The draft genome of Acidiphilium sp. JA12-Al consists
of 4.18 Mbp on 298 contigs, of which 99 have a length
of at least 10 kbp. Genome features are summarized in
Table 3. The average G + C content is 66.9 %. The draft
genome encodes 4065 genes in total, of which 4015
(98.8 %) are predicted protein coding genes and 50
(1.2 %) are RNA genes. 2663 (65.5 %) genes are assigned
to COG groups (Table 4), 1238 (30.5 %) are connected
to KEGG pathways and 520 (12.8 %) are assigned to the
transporter classification. A comparison of genome fea-
tures of Acidiphilium sp. JA12-Al to the genomes of
Acidiphilium cryptum JE-5, Acidiphilium multivorum
AUI301 and Acidiphilium sp. PM, DSM 24941 is pro-
vided in Table 5.

Insights from the genome sequence

In order to understand the potential interaction be-
tween Acidiphilium sp. JA12-A1 and the iron oxidizer
“Ferrovum” sp. JA12 in the mixed culture we analyzed
the genome of Acidiphilium sp. JA12-A1l with special
focus on genes that may be involved in the utilization
of “Ferrovum” derived organic substances as an energy
source and as growth substrates.

The genome analysis revealed six genes that encode
for putative oligo- and polysaccharide hydrolyzing enzymes,
among which we identified a-amylases or amylase-related
enzymes, [-glucosidase, endoglucanase, a trehalase and a
glycogen-debranching enzyme. Acidiphilium sp. JA12-Al
may use these enzymes to break down polysaccharides that
are part of the cell envelope of the iron oxidizer “Ferrovum”
or that are excreted as slimes. Applying the EBI Inter-
ProScan to the sequences of these enzymes resulted in
predicted N-terminal signal peptides in the [-glucosidase
and endoglucanase which indicates a potential excretion of
these enzymes.

The genome of Acidiphilium sp. JA12-Al encodes a
variety of transport systems to take up secreted organic
compounds or the products of the hydrolysis of polysac-
charides. These transport systems comprise annotated
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Table 3 Genome statistics Acidiphilium sp. JA12-A1

Attribute Value % of Total
Genome size (bp) 4,184,331 100.0
DNA coding (bp) 3,699,946 884
DNA G+ C (bp) 2,801,106 66.9
DNA scaffolds 298

Total genes 4,065 100.0
Protein coding genes 4,015 98.8
RNA genes 50 12
Pseudo genes 293 7.2
Genes in internal clusters 3,092 76.1
Genes with function prediction 3,193 786
Genes assigned to COGs 2,663 65.5
Genes with Pfam domains 3,191 785
Genes with signal peptides 268 6.6
Genes with transmembrane helices 857 211

CRISPR repeats Not reported

sugar transporters or sugar phosphate permeases of
the major facilitator family, 15 ABC-transport systems
for mono- and disaccharides and a phosphotransferase
system (PTS) of the fructose type. The ABC-transporters
are predicted to take up ribose, xylose, galactose or
similar monosaccharides. The PTS in Acidiphilium
sp. JA12-Al consists, similar to the PTS of other
Acidiphilium strains, of two fusion proteins (HPr/EI/
EIIA and EIIB/EIIC).

Based on the genome sequence we reconstructed the
metabolic pathways that may enable Acidiphilium sp.
JA12-A1 to gain energy by the complete aerobic oxidation
of organic compounds, preferably of monosaccharides.
Although we did not identify the fructose-6-phosphate kin-
ase, one of the key enzymes of the glycolysis, Acidiphilium
sp. JA12-A1 may bypass the reaction via the activity of en-
zymes of the pentosephosphate pathway, thus still being
able to convert glucose to acetyl-CoA. Acetyl-CoA is fur-
ther oxidized to carbon dioxide by the citrate cycle and the
electrons are transferred to oxygen by the protein com-
plexes of the aerobic respiratory chain. We also identified
gene clusters encoding the subunits of a photosynthetic re-
action center, associated cytochromes and proteins involved
in the biogenesis of the reaction center proteins that may
enable Acidiphilium sp. JA12-A1 to use light as additional
energy source.

In addition to the aerobic respiration Acidiphilium sp.
JA12-Al may also be able to reduce ferric iron under
microaerobic or anaerobic conditions as it has been de-
scribed for other Acidiphilium strains [51, 52]. Despite
of the experimental evidence for the ferric iron reduc-
tion, the proteins that are involved in the direct reduc-
tion of ferric iron in acidophiles have still not been
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Table 4 Number of genes associated with general COG
functional categories

Code Value % age Description

J 147 50  Translation, ribosomal structure and biogenesis

A 0 00  RNA processing and modification

K 180 6.1 Transcription

L 157 53  Replication, recombination and repair

B 2 0.1 Chromatin structure and dynamics

D 167 57  Cell cycle control, Cell division, chromosome
partitioning

\% 35 1.2 Defense mechanisms

T 77 26 Signal transduction mechanisms

M 167 57  Cell wall/membrane biogenesis

N 44 1.5 Cell motility

u 77 26 Intracellular trafficking and secretion

(@] 107 36 Posttranslational modification, protein turnover,
chaperones

C 260 88  Energy production and conversion

G 247 83  Carbohydrate transport and metabolism

E 294 100  Amino acid transport and metabolism

F 66 2.2 Nucleotide transport and metabolism

H 125 4.2 Coenzyme transport and metabolism

| 164 56  Lipid transport and metabolism

p 124 4.2 Inorganic ion transport and metabolism

Q 89 30  Secondary metabolites biosynthesis,
transport and catabolism

R 320 108  General function prediction only

S 241 82  Function unknown

- 1400 344  Not in COGs

The total is based on the total number of protein coding genes in the genome

identified [53]. The genome analysis of Acidiphilium sp.
JA12-A1 also failed to reveal any further details of the
electron transfer processes to ferric iron.

Apart from providing the source of energy the sugar
compounds also appear to be the preferred carbon
source for the biomass production in Acidiphilium sp.
JA12-A1l. We inferred the pathways that are necessary
for the conversion of the monosaccharides to the pre-
cursors of the biomass production, such as the amino
sugar and nucleotide sugar metabolism, the citrate
cycle, the fatty acid synthesis and the purine and
pyrimidine metabolism. Besides the synthesis of bio-
mass there is genetic evidence for the storage of car-
bon compounds as polyhydroxybutyrate (PHB) which
is further supported by transmission electron micro-
scopic analysis of representative cells showing PHB
granula (Fig. 2). Acidiphilium sp. JA12-Al also ap-
pears to be able to fix carbon dioxide heterotrophi-
cally, since its genome encodes a pyruvate carboxylase
and a pyruvate carboxykinase.
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Table 5 Comparison of genome features of Acidiphilium sp. JA12-A1 to close relatives

Genome features

Genome name

A. cryptum A. multivorum Acidiphilium sp. Acidiphilium sp.
JF-5° AlU301° PM DSM 24941¢ JA12-A1¢

Sequencing status Finished Finished Draft Permanent draft
Genome size (Mbp) 40 42 39 42
Number of plasmids 8 8 9 Not reported
GC (percentage) 67.1 % 67.0 % 664 % 66.9 %
Total gene count 3,701 4,004 3,908 4,065
Number of CDS genes (percentage) 3,637 (98.3 %) 3,948 (98. 6 %) 3,859 (98.8 %) 4015 (98.8 %)
Number of RNA genes 64 (1.7 %) 56 (1.4 %) 49 (1.3 %) 50 (1.2 %)
Number of genes assigned to COGs (percentage) 2,830 (79.1 %) 3,188 (76.5 %) 3,116 (79.7 %) 2,663 (65.5 %)
Number of genes connected to KEGG pathways 1,197 (32.3 %) 1,283 (32.0 %) 1,133 (29.0 %) 1,238 (30.5 %)
(percentage)
Number of genes assigned to enzymes (percentage) 1,055 (28.5 %) 1,107 (27.7 %) 965 (24.7 %) 1,076 (26.5 %)
Number of genes assigned to transporter classification 524 (14.1 %) 562 (14.0 %) 573 (14.7 %) 520 (12.8 %)
(percentage)
Number of genes coding transmembrane proteins 817 (22.1 %) 880 (22.0 %) 839 (21.5 %) 857 (21.1 %)
(percentage)
Number of genes with signal peptides (percentage) 240 (6.5 %) 266 (6.6 %) 232 (5.9 %) 268 (6.6 %)

2accession number: NC_009484; PNC_015186; AFPR00000000; “JFHO00000000

Extended insights

Although there are four genome sequences of species
belonging to the genus Acidiphilium to compare the
genome of strain JA12-Al with, we focused our com-
parative genomics approach on Acidiphilium cryptum
JE-5, Acidiphilium multivorum AUI301, Acidiphilium
sp. PM DSM 24941 and Acidiphilium sp. JA12-Al. A
comparison of the genomes of Acidiphilium sp. JA12-A1
and Acidiphilium angustum ATCC 35903 confirmed the
phylogenetic distance and revealed that these genomes
cannot be meaningfully aligned (results not shown).
Therefore, the circular representation of the genome
comparisons (Fig. 3) and the Venn diagram summarizing
orthologous genes between the genomes are limited to
strains belonging to the same phylogenetic cluster as
Acidiphilium sp. JA12-A1 (Fig. 4).

The circular representation of genome sequences of
four Acidiphilium strains revealed a high structural simi-
larity of the genomes (Fig. 3). To identify orthologous
genes between all four organisms, we performed a whole
genome comparison. To prepare the data for analysis we
used the scripts ncbi_ftp_download v0.2, cat_seq v0.1
and cds_extractor v0.6 [54] and Proteinortho v5.04 [55]
with a similarity cutoff of 50 % and an E-value of le-10.
Paralogous genes detected for all genomes were not in-
cluded into this approach. All four strains have a core
genome comprising 2515 genes, which is up to 70 % of the
genes present in a single genome (Fig. 4). Acidiphilium
JA12-Al has 2943 orthologous genes in common with
Acidiphilium multivorum AIU301, 2789 with Acidiphilium
cryptum JE-5 and 2734 with Acidiphilium sp. PM DSM

24941. We detected the highest number of orthologous
genes (2901) between Acidiphilium cryptum JE-5 and
Acidiphilium multivorum AIU301. Acidiphilium sp. PM
DSM 24941 and Acidiphilium multivorum AIU301 have
2870 in common, while Acidiphilium cryptum JE-5 and
Acidiphilium sp. PM DSM 24941 share 2654 genes.
Acidiphilium sp. PM DSM 24941 harbors the highest
number of singletons (716) followed by Acidiphilium
JA12-A1 with 475, Acidiphilium multivorum AIU301
with 381 and Acidiphilium cryptum JE-5 with 350, re-
spectively. This, therefore, confirms the high degree of
similarity among the various Acidiphilium strains as
already concluded from the 16S rRNA gene based phyl-
ogeny (Fig. 1). Moreover, the high degree of congruence
of the selected genome features provided in Table 5 dem-
onstrates the high similarity among the four genomes
with respect to the functional organization, (e.g. number
of genes assigned to various COG functional categories
(not shown), and pathways of the central metabolism).
Despite the high similarity in genome organization
and content there are also unique genes in each of the
Acidiphilium species that were included in this com-
parative genome analysis. For instance, Acidiphilium sp.
JA12-A1, Acidiphilium cryptum JE-5 and Acidiphilium
multivorum AUI301 contain a cluster of homologous
genes encoding phosphonate C-P-lyases which are re-
quired for utilization of organic phosphate compounds.
However, of those only Acidiphilium sp. JA12-Al en-
codes a putative phosphonate specific ABC transporter.
ABC transporter encoding genes are usually clustered.
In the case of Acidiphilium sp. JA12 the genes are


http://dx.doi.org/10.1601/nm.889
http://dx.doi.org/10.1601/nm.890
http://dx.doi.org/10.1601/nm.895
http://dx.doi.org/10.1601/nm.893
http://dx.doi.org/10.1601/nm.889
http://dx.doi.org/10.1601/nm.889
http://dx.doi.org/10.1601/nm.895
http://dx.doi.org/10.1601/nm.890
http://dx.doi.org/10.1601/nm.890
http://dx.doi.org/10.1601/nm.890
http://dx.doi.org/10.1601/nm.895
http://dx.doi.org/10.1601/nm.895
http://dx.doi.org/10.1601/nm.890
http://dx.doi.org/10.1601/nm.889
http://dx.doi.org/10.1601/nm.895
http://dx.doi.org/10.1601/nm.890
http://dx.doi.org/10.1601/nm.889
http://dx.doi.org/10.1601/nm.889
http://dx.doi.org/10.1601/nm.890
http://dx.doi.org/10.1601/nm.895
http://dx.doi.org/10.1601/nm.895

Ullrich et al. Standards in Genomic Sciences (2015) 10:56 Page 7 of 10

4100000 0 100000

= T T T 20
i i

\\\\Q\\\\\\\;\:\ \\\w\\mrm 1V O gy .'%'/',?,W
R AN Ity ,

W
S Vot Y,
SN\ g @ W Z
N \\ ‘ ‘\ 1 ’/ /Z,
A AW ’ VNN /. W%
O\ 0’ “;\‘\\‘“\ ,0 /// %%
X
\ NN

//
~_
y

>
\
\\

S < (Y %
- . "g\'! y s\\ A ly & P
S ..~ A } ./‘-/ 3 = \ == 900000
== - - < 3 ==
=S= - - - =
1200000 = 5:: l ; a\ L | i 'g'_’% 1000000
- =3 = g SRR g
T = — - S8 W B—
3100000 i ;: “ 3 a - ~—i -5 i— =
-= » = = sag= =S
—H = - > A - M =
3000000\ = i‘ '/ ) ‘ ~ " F1200000
e -

280000 ‘ : II"' Jnh J W : G
\ /\Q ’40 ¢
A\
V4 //O\ '[,, ’ K \\
///,‘ / / /.l. AN N WS As00000
% /1 - — RS
|

/
o gl
/ﬂfm,f 0 o g g . o0
L0 poy gy oy w0

2200000 5100000 2000000

2300000 1900000
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J

spread within the genome indicating that these have substances secreted by other community members or

possibly been acquired via horizontal gene transfer. derived from microbial cell decay.
Analyzing the genome sequence of the novel strain

Acidiphilium sp. JA12-A1 we inferred such an interspe-
Conclusions cies carbon transfer in an iron oxidizing mixed culture
The microbial communities of AMD and mining associ-  derived from a pilot plant for the biological remediation
ated water bodies have been investigated in some detail of AMD. The potential carbon transfer involves Acidi-
over the last decades [3, 5, 10-12, 14, 56-58]. All of these  philium sp. JA12-Al excreting polysaccharide hydrolyz-
reports agree on the supposed role of heterotrophic ing enzymes, such as B-glucosidases or endoglucanases,
microorganisms, including members of the genus to break down cell envelope polysaccharides from decay-
Acidiphilium, regarding their utilization of organic ing cells and from the co-occurring iron oxidizer that is
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A. multivorum AlU301
(3949 / 315)
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(3559/197)
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~~Acidiphilium sp. PM DSM 24941
(38591 172)

Acidiphilium sp. JA12-A1
(37221 194)

Fig. 4 Venn diagramm of the genome comparison of Acidiphilium sp. JA12-A1 with other Acidiphilium strains. Venn diagram showing the orthologous
genes between Acidiphilium sp. JA12-A1, Acidiphilium cryptum JF-5 (CPO00689-CP000697), Acidiphilium multivorum AIU301 (AP012035-AP012043) and
Acidiphilium sp. PM DSM 24941 (AFPRO0000000). Ortholog detection was done with the Proteinortho software (blastp) with an similarity cutoff of 50 % and
an E-value of 1e-10. The total number of genes and paralogs, respectively, are depicted under the corresponding species name. Open reading frames

(ORFs) that were classified as pseudogenes, were not included in this analysis

related to F. myxofaciens P3G [7]. Monosaccharides ori-
ginating from polysaccharide hydrolysis or from lysed
cells are taken up by Acidiphilium sp. JA12-A1 via spe-
cific uptake systems to produce bacterial biomass. Alter-
natively, the monosaccharides or parts thereof are
oxidized to gain energy for the cellular metabolism.
Under aerobic conditions the electron donor is com-
pletely oxidized to carbon dioxide which is the preferred
carbon source for the autotrophic iron oxidizer. How-
ever, the iron oxidizer may not only profit from the local
increase of the carbon dioxide availability but also from
the removal of organic compounds by Acidiphilium sp.
JA12-A1, since chemolithoautotrophic iron oxidizers
have long been known to be sensitive to organic com-
pounds [59]. The sum of these potential interactions
may account for the tenacious association of both organ-
isms in the mixed culture and provide an explanation
for the difficulties encountered when attempting to ob-
tain pure cultures of the iron oxidizing bacteria.

In order to experimentally substantiate such an inter-
species carbon transfer we suggest to analyze, similar to
the study of Kermer et al. [9], secreted metabolites in
combination with a stable isotope approach (**C-labelled
carbon dioxide) since this may reveal the actual metabo-
lites that are utilized by Acidiphilium sp. JA12-A1 in the
mixed culture. This approach may not only extend our
knowledge of the proposed interspecies carbon transfer
[9], but also elucidate whether Acidiphilium sp. JA12-A1
incorporates carbon dioxide heterotrophically by carb-
oxylation reactions under the conditions provided within
the mixed culture. In Acidiphilium rubrum the incorpor-
ation of carbon dioxide was described to be enhanced
under aerobic-light conditions with the required energy
provided by light utilization via a photosynthetic reac-
tion center and phototrophic pigments [60]. We identi-
fied gene clusters homologous to those described for
Acidiphilium rubrum and other Acidiphilium strains in
the genome of Acidiphilium sp. JA12-Al hinting at a

potential photosynthetic activity. However, since none of
the described Acidiphilium strains seems to be capable
of using light as sole source of energy [61], it has been
proposed that the photosynthetic activity is used to
pump protons across the cytoplasmic membrane in
order to stabilize the proton balance between the acidic
environment and the neutral cytoplasm [60].

Acidiphilium strains are also thought to play a direct
role in the iron cycle by regenerating dissolved ferrous
iron through the reduction of ferric iron under micro-
aerobic and anoxic conditions [11, 62]. Other studies
have shown that ferrous iron is regenerated from the re-
duction of ferric iron minerals by Acidiphilium spp. and
other acidophilic ferric iron reducers [52]. The ferrous
iron is then available as an energy source for the iron
oxidizers again. Details of the pathway of ferric iron re-
duction could, however, not be deduced from the gen-
ome of Acidiphilium sp. JA12-A1l.

The Acidiphilium strains Acidiphilium cryptum JE-5,
Acidiphilium multivorum AUI301, Acidiphilium sp. PM
DSM 24941 and Acidiphilium sp. JA12-A1, which all be-
long to the same phylogenetic subgroup within the
genus Acidiphilium, show high similarities regarding
their structural and functional genome organization.
Since they also share important metabolic traits with re-
spect to growth conditions and nutrient requirements
the proposed interaction between Acidiphilium sp.
JA12-A1 and the iron oxidizer Ferrovum spp. may also
be true for other members of the genus Acidiphilium in
their natural habitats.
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