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Abstract

Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128
was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science
Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We
identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between
the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %.
Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The
gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.
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Introduction
The first step in the aerobic nitrification process is the
oxidation of ammonia to nitrite, mediated mainly by
AOB or AOA in soil environments. The most numer-
ous AOB isolated or detected by non-cultural methods
in aerobic agricultural surface soils are consistently
members of the Nitrosospira genus [1]. Nitrosospira
briensis C-128 [2] is a chemolithoautotrophic ammonia-
oxidizing betaproteobacterium (order Nitrosomona-
dales, family Nitrosomonadaceae, genus Nitrosospira
[3–9]) isolated from a fertilized soil under cultivation
for blueberry in Falmouth, Massachusetts, USA in
1971. The genome of Nitrosospira briensis C-128 is the
third genome sequence from the genus Nitrosospira
[8–10] to be published [11–13] and thus provides an
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important comparison among Nitrosospira. This report
includes a summary of the genome sequence and
selected features for Nitrosospira briensis C-128 and
results are publically available in GenBank accession
CP012371.
Organism information
Classification and features
Nitrosospira briensis was described by Winogradsky and
& Winogradsky in 1933 [8] as an ammonia-oxidizing
bacterium isolated from soil. The genus name, Nitrosos-
pira, is derived from two Latin roots: nitrosus, meaning
nitrous, and spira, indicating spiral. The species name
briensis, refers to the original isolation location near
Brie, France. The culture described by Winogradsky &
Winogradsky [8] was not maintained and reisolation of a
replacement strain was reported by Watson in 1971
[14]. At approximately the same time, N. briensis strain
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C-128 was isolated by enrichment culturing [15] from a
surface soil sample (pH 6.2) collected from a fertilized
blueberry patch in East Falmouth, Massachusetts in
1971 (Frederica Valois). In 1993, the genus Nitrosospira
was emended to include the former genera of Nitrosovi-
brio and Nitrosolobus [9] based on the high identities of
the 16S rRNA gene sequences. Nitrosospira briensis was
designated the type species for the genus with strain C-
76 as the type strain (also known as strain Nsp10 [16]1).
The full-length 16S rRNA gene sequence of N. briensis
C-128 is 99 % identical to the N. briensis strain C-76/
Nsp10 sequence (Fig. 1). The culture of N. briensis strain
C-128 was received in the Norton laboratory from F.
Valois (Woods Hole Oceanographic Institution) in 1995.
Nitrosospira briensis C-128 is presently maintained in a
culture collection at WHOI and may be obtained
upon request from J.M. Norton. Classification and
general features of Nitrosospira briensis C-128 are
provided as Minimum Information about the Genome
Sequence (MIGS) in Table 1. Electron micrographs of
the pure culture organism are shown in Fig. 2 re-
vealing the tight spirals visible with TEM negative
staining and the convoluted surface of this Nitrosos-
pira as revealed by SEM.
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Fig. 1 The phylogenetic tree highlighting the position of Nitrosospira briensis
(outgroup). The tree was inferred from 1417 aligned characters of the 16S
the sotware MEGA [50]. Support values (%) at branch points are from 100
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briensis C-128 (this study), Nitrosospira lacus APG3 [11] and Nitrosospira m
Genome sequencing information
Genome project history
Nitrosospira briensis C-128 was chosen for sequencing
through the Community Science Program (2010) of the
DOE Joint Genome Institute as an important representa-
tive of the AOB to improve the scope and quality of
intra- and inter-generic comparisons in the Nitrosomo-
nadales. The chemolithotrophic metabolism of the
AOB, the pathways for production of nitrous oxide and
urea metabolism were additional motivating interests in
sequencing this genome. Sequencing, finishing, and
annotation were accomplished by JGI. The genome se-
quence has been deposited in the Genome OnLine Data-
base [17] and is part of the NCBI Reference Sequence
Collection [18]. A summary of the project information is
found in Table 2.

Growth conditions and genomic DNA preparation
Nitrosospira briensis C-128 was grown in a 25 mM am-
monium medium pH 7 containing mineral salts and
phenol red at 28 °C in 100 ml of media in 500 ml flasks
as described previously [19]. The pH was adjusted to
neutral using 0.5 M KHCO3 as needed during growth.
Early stationary phase cultures were checked at harvest
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Table 1 Classification and general features of Nitrosospira briensis
C-128 [42, 43]

MIGS ID Property Term Evidence
codea

Current classification Domain Bacteria TAS [44]

Phylum Proteobacteria TAS [45]

Class Betaproteobacteria TAS [7, 46]

Order Nitrosomonadales TAS [5, 46]

Family Nitrosomonadaceae TAS [4, 46]

Genus Nitrosospira TAS [6, 8]

Species Nitrosospira briensis TAS [6, 8]

Strain C-128 IDA

Gram stain negative TAS [14]

Cell shape Spiral/vibrioid IDA

Motility motile TAS [14]

Sporulation Non-sporulating TAS [14]

Temperature range 15–30 °C TAS [14]

Optimum
temperature

25–28 °C TAS [14]

pH range; Optimum 6.0–8.2;7.0 TAS [14]

Carbon source carbon dioxide; carbonate TAS [14]

Energy source ammonia oxidation TAS [14]

Energy metabolism chemolithotroph TAS [14]

MIGS-6 Habitat soil (acid) IDA

MIGS-6.3 Salinity Non-halophile TAS [14]

MIGS-22 Oxygen requirement Aerobic TAS [14]

MIGS-23 Isolation and growth
conditions

Isolation after enrichment
on inorganic ammonium
salts medium

TAS [14]

MIGS-15 Biotic relationship Free living NAS

MIGS-14 Pathogenicity Non-pathogen NAS

Biosafety level 1 NAS

MIGS-4 Geographic location East Falmouth, MA, USA NAS

MIGS-4.1 Latitude 41°35′38″ N NAS

MIGS-4.2 Longitude 70°34′20″ W NAS

MIGS-4.3 Depth surface soil NAS

MIGS-4.4 Altitude 6 m NAS

MIGS-5 Sample collection 1971 Feb 18 NAS
aEvidence codes – IDA Inferred from Direct Assay (first time in publication),
TAS Traceable Author Statement (i.e. a direct report exists in the literature),
NAS Non-traceable Author Statement (i.e. not directly observed for living,
isolated sample, but based on a generally accepted property for the species,
or anecdotal evidence). These evidence codes are from the Gene Ontology
project [47]

1000 nm

a

b

Fig. 2 Electron micrographs of N. briensis. A) TEM prepared by
negative staining as previously described [14, 15]. Scale is 1000 nm.
B) SEM of Nitrosospira briensis C-128. Glass coverslips were placed in
a growing culture for approximately one month, removed and then
fixed with 2 % glutaraldehyde in 0.1 % HEPES buffer overnight. The
samples were subjected to alcohol series dehydration (50-100 %
ethanol) and then chemically dried using hexamethyldisilazane. The
image shows presumptive invaginations of the membranes of the
cell. Scale is 500 nm
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for heterotrophic contamination by plating 0.1 mL on ¼
strength nutrient agar plates and incubating for two
weeks. Cells were harvested from four 100 mL cultures
by centrifugation (13,000 RCF for 30 min). Bacterial gen-
omic DNA (gDNA) was isolated using the CTAB proto-
col recommended by JGI [20]. Size and quality of the
gDNA was assessed via gel electrophoresis and amplifi-
cation of the V4 region of the 16S rRNA gene using uni-
versal primers [21] followed by sequencing at the Center
for Integrative Biosystems, USU on the ABI PRISM™
3730 DNA Analyzer using BigDye terminator chemistry.
The gDNA was of the expected size (greater than 23
kbp) and no contaminating organisms were detected by
partial 16S rRNA gene sequencing of 10 replicate reac-
tions or by plating. Approximately 20 μg of DNA was
submitted to JGI for sequencing.

Genome sequencing and assembly
The genomic DNA of Nitrosospira briensis C-128 was
sequenced at the DOE JGI using the Pacific Biosciences
(PacBio) sequencing technology [22]. All general aspects
of sample handling, library construction and sequencing

http://doi.namesforlife.com/10.1601/ex.18586


Table 2 Genome sequencing project information

MIGS ID Property Term

MIGS 31 Finishing quality Finished

MIGS-28 Libraries used One library, PacBio SMRTbell
Library

MIGS 29 Sequencing platforms PacBio RS

MIGS 31.2 Fold coverage 176X

MIGS 30 Assemblers HGAP v. 2.2.0.p1 [23]

MIGS 32 Gene calling method Prodigal, GenePRIMP

Locus Tag F822

Genbank ID CP012371.1

GenBank Release Date 14-Aug-2015

GOLD ID Gp0006506

BioProject ID PRNJA183056

MIGS 13 Source Material Identifier Nitrosospira briensis C-128 WHOI

Project relevance Environmental, Biogeochemical
cycling of nitrogen,
Biotechnological
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followed JGI isolate sequencing protocols. A PacBio
SMRTbell™ library was constructed and sequenced on
the PacBio RS platform, which generated 148,206 reads
totaling 519.8Mbp. Raw reads were assembled using
HGAP v. 2.2.0.p1 [23]. The final draft assembly con-
tained one contig in one scaffold, totaling 3.2 Mbp in
size. The input read coverage was 176.1×. An earlier ver-
sion of the genome was sequenced using the Illumina
Hi-Seq 2000 platform. However, this earlier sequence
assembly JHVX00000000.1 remained in 31 scaffolds (se-
quences JHVX01000001.1-JHVX01000031.1) with the
nearly identical repeats of several key catabolic gene clus-
ters remaining unresolved. Previously, genome closure for
Nitrosospira [12] was achieved only after extensive directed
finishing to correctly assemble long nearly identical repeats
of gene clusters encoding key catabolic modules including
ammonia monooxygenase (amo) for the activation of sub-
strate and hydroxylamine dehydrogense (haoA) and heme-
cytochrome c proteins (cycAB) for the extraction of elec-
trons and their delivery to the quinone pool in the mem-
brane [24]. The long read capability of the PacBio platform
and our depth of coverage enabled sufficient discrimin-
ation of repeats to assemble across multiple nearly identical
regions into a single contig representing the chromosome
of the bacterium. For predicted genes outside of gaps and
repeat regions the PacBio and the Illumina predicted genes
were 100 % identical. Therefore, we did not combine the
Illumina Hi-Seq data with the PacBio data for the complete
genome sequence CP012371 reported here.

Genome annotation
Genes were identified using Prodigal [25], as part of the
JGI’s Microbial annotation pipeline followed by a round
of manual curation using GenePRIMP [26]. The pre-
dicted CDSs were translated and used to search the
NCBI nonredundant database, UniProt, TIGRFam, Pfam,
KEGG, COG, and InterPro databases. Transfer RNA
genes were identified using the tRNAScanSE tool [27].
Ribosomal RNA genes were found by searches against
models of the ribososmal RNA genes built from SILVA
[28]. Other non-coding RNAs were found using INFER-
NAL [29]. Further gene prediction and manual curation
was performed within the Integrated Microbial Genomes
(IMG) platform [30] developed at JGI.

Genome properties
The genome of Nitrosospira briensis C-128 contains
3,210,113-bp in one chromosome with a GC content of
53.25 % and no plasmids (Fig. 3). The genome contains
one complete ribosomal RNA operon similar to other
AOB [3]. Coding bases (2,758,471) comprised 85.93 % of
the total. We identified 3018 protein encoding genes, 55
RNA genes and 130 pseudogenes. For the identified
genes, 74.23 % had a function prediction associated with
them. The two-way average nucleotide identity [31]
between the chromosomes of Nitrosospira multiformis
ATCC 25196 [9, 32, 33] and Nitrosospira briensis C-128
was found to be 77.2 % confirming species delineation
[34]. The genome statistics are summarized in Table 3
and genes associated with COG functional categories are
summarized in Table 4.

Insights from the genome sequence
Selected functional inventory in the complete genome
sequence
Nitrosospira briensis C-128 contains complete “amo”
and “hao” gene clusters in three nearly identical copies
on the chromosome. The full-length amoCABEDcopCD
gene cluster is repeated twice (F822_1680-1686, &
2228–2234) while the third cluster contains only the
three structural “amo” genes, amoCAB (F822_0880-0878).
As in most other betaproteobacterial AOB genomes, the
N. briensis C-128 genome contains three additional amoC
singleton genes (F822_0485, 1530, & 2742). The “hydrox-
ylamine-ubiquinone redox module” (HURM) [24] is
encoded by the haoAB-cycAB gene cluster, which oc-
curs three times (F822_0640-0643, 0873–0876, 1808–
1811) in the genome sequence. The N. briensis C-128
genome also encodes nitrosocyanin (ncyA; F822_2886),
a protein unique to ammonia-oxidizing bacteria, which
possibly functions in the regulation of electron transfer
[35]. A urease operon containing α, β, & γ subunit-
encoding genes as well as genes encoding accessory
proteins E, F, G, & H (F822_0450-0456) is preceded by
a urea transporter gene (utp; F822_0449). Genes encod-
ing alternative catabolic inventory such as hydrogenase
were not identified. The N. briensis C-128 genome
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Fig. 3 a Graphical map of the genome. From the outside to the center: genes on forward stand and Genes on reverse strand (color by COG categories
see legend), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. b Legend for COG category colors
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Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 3,210,113 100.00

DNA coding (bp) 2,758,471 85.93

DNA G + C (bp) 1,709,486 53.25

DNA scaffolds 1 100.00

Total genes 3073 100.00

Protein coding genes 3018 98.2

RNA genes 55 1.79

Pseudo genes 130 4.23

Genes with internal clusters 394 12.82

Genes with function prediction 2232 72.63

Genes assigned to COGs 1849 60.17

Genes with Pfam domains 2303 74.94

Genes with signal peptides 290 9.44

Genes with transmembrane helices 741 24.11

CRISPR repeats 1 0.02

Table 4 Number of genes associated with general COG
functional categories

Code Value %age Description

J 149 7.32 Translation, ribosomal structure and biogenesis

A 1 0.05 RNA processing and modification

K 82 4.03 Transcription

L 122 6.00 Replication, recombination and repair

B 1 0.05 Chromatin structure and dynamics

D 25 1.23 Cell cycle control, Cell division, chromosome
partitioning

V 24 1.18 Defense mechanisms

T 75 3.69 Signal transduction mechanisms

M 167 8.21 Cell wall/membrane biogenesis

N 53 2.60 Cell motility

U 67 3.29 Intracellular trafficking and secretion

O 114 5.60 Posttranslational modification, protein
turnover, chaperones

C 153 7.52 Energy production and conversion

G 88 4.32 Carbohydrate transport and metabolism

E 140 6.88 Amino acid transport and metabolism

F 54 2.65 Nucleotide transport and metabolism

H 99 4.86 Coenzyme transport and metabolism

I 73 3.59 Lipid transport and metabolism

P 106 5.21 Inorganic ion transport and metabolism

Q 57 2.80 Secondary metabolites biosynthesis, transport
and catabolism

R 202 9.93 General function prediction only

S 183 8.99 Function unknown

- 1224 39.83 Not in COGs
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contains a single gene cluster encoding the Calvin-
Benson-Bassham cycle for carbon assimilation includ-
ing the carboxylation reaction, which is encoded by a
single-copy cbb operon in the Form 1C (red-like) sub-
group (F822_1009-1012) with > 90 % identity with hom-
ologous genes in Nitrosospira multiformis [36] and
Nitrosospira sp. 40KI [37].
Genes encoding inventory implicated in nitrogen oxide

metabolism and /or nitrosative stress [38] include those
for copper nitrite reductase (nirK, singleton F822_2604)
and a possible quinol nitric oxide reductase (qNOR) en-
coding gene (F822_0115). Similar to arrangements in
many AOB genomes, a gene cluster (norSY-senC-orf1)
(F822_ 1803–1806) encoding nitric oxide reductase heme-
copper oxidase (sNOR) was found upstream of a nitrite
transporter gene (F822_1807) and one of the three
haoAB-cycAB clusters. However, the norCBQD cluster en-
coding cytochrome C nitric oxide reductase (cNOR) was
not found. The genes encoding precursors of cytochromes
c’-beta (cytS) and P-460 (cytL) were not detected in the C-
128 genome sequence. The gene of NO-responsive regula-
tor (nnrS) was present albeit truncated.
CRISPR/Cas System Nitrosospira briensis C-128 con-

tains a CRISPR/Cas system located at F822_1846-1851
suggestive of phage interactions [39]. The CRISPR-
associated (CAS) proteins belong to the subtype 1-F (Yer-
sinia pestis type) [40]. The CRISPR contains 11 spacers
each with 32 bp. No matches between these spacers and
protospacers in viral genomes were detected in the NCBI
non-redundant database. The direct repeat sequence in
the CRISPR is 28 bp: TTTCTGAGCTGCCTATGCGG-
CAGTGAAC. As soil viral metagenomes become better
characterized, associations between viral protospacers and
the spacers found in N. briensis’ CRISPR may help to
identify possible phage types of N. briensis.

Conclusions
Nitrosospira briensis C-128 has a suite of genes enabling
it to survive in soil environments as a chemolithoauto-
troph. The completion of several genomes in the Nitro-
sospira genus will facilitate a comprehensive analysis of
the genetic toolkit that enables these AOB to co-inhabit
the terrestrial niche. Further experiments elucidating
gene function, especially those involved in the metabol-
ism of nitrogen oxides and related to nitrosative stress
[41], will increase the relevance of the completed gen-
ome of Nitrosospira briensis C-128. The evolutionary
relationships in the genera of the Nitrosomonadaceae
are currently under reconsideration.

Endnotes
1Editor’s note – Readers are advised that the published

record regarding the type strain and a proposed neotype
strain of Nitrosospira briensis is problematic. Although
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the Approved Lists of Bacterial Names (Int J Syst Bacter-
iol 1980; 30:225) list the type as “no culture available”,
Koops and Harms subsequently published on strain Nsp
10 as the equivalent to ATCC 25971 (Arch Microbiol
1985; 141:214–218)
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