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Abstract

The marine alphaproteobacterium strain O3.65 was isolated from an enrichment culture of surface seawater
contaminated with weathered oil (slicks) from the Deepwater Horizon (DWH) oil spill and belongs to the
ubiquitous, diverse and ecological relevant Roseobacter group within the Rhodobacteraceae. Here, we present a
preliminary set of physiological features of strain O3.65 and a description and annotation of its draft genome
sequence. Based on our data we suggest potential ecological roles of the isolate in the degradation of crude oil
within the network of the oil-enriched microbial community. The draft genome comprises 4,852,484 bp with 4,591
protein-coding genes and 63 RNA genes. Strain O3.65 utilizes pentoses, hexoses, disaccharides and amino acids as
carbon and energy source and is able to grow on several hydroxylated and substituted aromatic compounds.
Based on 16S rRNA gene comparison the closest described and validated strain is Phaeobacter inhibens DSM 17395,
however, strain O3.65 is lacking several phenotypic and genomic characteristics specific for the genus Phaeobacter.
Phylogenomic analyses based on the whole genome support extensive genetic exchange of strain O3.65 with
members of the genus Ruegeria, potentially by using the secretion system type IV. Our physiological observations
are consistent with the genomic and phylogenomic analyses and support that strain O3.65 is a novel species of a
new genus within the Rhodobacteraceae.
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Introduction
The Roseobacter clade is a major marine bacterial group,
often associated with phytoplankton blooms [1–3], and
accounts for up to 35 % of the bacterioplankton in coastal
waters and the Southern Ocean [4–6]. The Roseobacter
clade belongs to the family Rhodobacteraceae within the
order Rhodobacterales, among the Alphaproteobacteria
[7]; organisms of this group show a highly diversified
range of physiological adaptations to various marine
ecosystems [4, 5, 8]. Several taxa of this group are stimu-
lated by different hydrocarbon compounds in laboratory

experiments or in situ, suggesting a function in aerobic
hydrocarbon degradation. Furthermore, pathways for
oxygenic degradation of aromatic compounds and genes
encoding for enzymes in alkane degradation were described
for these bacteria [9]. Contributions of Roseobacter-related
phylotypes to oil degradation were indicated by surveys
using 16S rRNA gene based molecular biological tech-
niques [10–14], but only a few studies were based on culti-
vation approaches [15, 16].
With this study, we fill this gap by specific isolation,

genomic and physiological analysis of a bacterium of the
Roseobacter clade isolated from seawater contaminated
with weathered oil slicks from the Deepwater Horizon
oil spill, one of the worst anthropogenic disasters in
maritime petroleum production. Within 84 days (20th
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April to 15th July 2010) over 4.1 million barrels
(~6.5x108 L) of crude oil burst out into the Gulf of
Mexico in a water depth of 1500 m [17]. Massive microbial
community shifts were observed in the deep hydrocarbon
plume at about 1,100 m depth, and in surface waters con-
taminated with slicks of weathered oil [12, 18–21].
Approximately two weeks after the beginning of the dis-

charge, the first samples of oil slick-contaminated surficial
seawater were collected, and were dominated by aromatic
hydrocarbon degrading Cycloclasticus spp. and heterotrophic
members of the Alteromonadales (Pseudoalteromonas,
Alteromonas and Colwellia spp.) as well as members of the
Rhodobacteraceae [20]. Passow and colleagues [22] re-
ported that weathered crude oil slicks at the air-water
interface were transformed into water-in-oil emulsions.
These emulsions promoted the formation exopolymeric
substances, mostly composed of polysaccharides; these
coalesced into huge mucus-rich marine snow aggregates
acting as hot spots for oil-specialized or -associated
microbes, in which emulsified oil and EPS served as
diverse food source for the highly active bacterial commu-
nity [12, 23]. The bacterial communities associated with
these aggregates included diverse phyla of Gammaproteo-
bacteria, Bacteroidetes, and different organisms of the
Roseobacter clade [12], and were distinctly different com-
pared to those in the oil-contaminated water column [20].
The succession of different microbial taxa being abun-

dant at distinct time points or steps during degradation
of oil-derived hydrocarbons suggests a metabolic net-
work comprising i) primary hydrocarbon-degrading and
specialized microbes (involved in consumption, hydroly-
sis, oxidation of distinct hydrocarbons), ii) emulsifying
microbes increasing the hydrocarbon bioavailability for
the networkers, and iii) a very diverse group of second-
ary hydrocarbon consumers. All together form a com-
plex assemblage of microbes involved in degradation of
a wide spectrum of oil-derived hydrocarbons [12, 24].
Strain O3.65 was isolated from contaminated seawater

of the DWH oil spill. Subsequent comparative analysis of
the 16S rRNA gene sequences revealed that strain O3.65
belongs to the Roseobacter group, with Phaeobacter and
Ruegeria species as closest described relatives. Here, we
present a set of features and physiological characteristics
of strain O3.65, and a description of the draft and anno-
tated genome sequence of this organism. Furthermore, we
partially elucidate its contribution in oil degradation and
classify strain O3.65 into the above mentioned microbial
oil degradation network based on the genomic and
physiological analyses.

Organism information
Classification and features
Strain O3.65 was isolated from an enrichment culture of
surface seawater sample contaminated with weathered

oil from the DWH oil spill (Table 1). The sample was
collected on June 1st in 2010, and was subsequently
stored undisturbed in a 50 ml Falcon tube for four years

Table 1 Classification and general features of Rhodobacteraceae
strain O3.65 according to the MIGS recommendations [92]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [93]

Phylum Proteobacteria TAS [94]

Class Alphaproteobacteria TAS [95, 96]

Order Rhodobacterales TAS [95]

Family Rhodobacteraceae TAS [7, 95, 97]

Genus not specified

Species not specified

(Type) strain: O3.65
(LPUY00000000.1)

Gram stain negative IDA

Cell shape rod shaped IDA

Motility motile IDA

Sporulation none NAS

Temperature
range

mesophile IDA

Optimum
temperature

30 °C IDA

pH range;
Optimum

not specified

Carbon source oligo-, di-saccharides,
organic acids,
amino acids,
hydroxylated aromatic
hydrocarbons

IDA

Energy
metabolism

heterotrophic IDA

MIGS-6 Habitat marine IDA

MIGS 6.3 Salinity 1- < 8 %, optimum 3.5 % IDA

MIGS-22 Oxygen
requirement

aerobic IDA

MIGS-15 Biotic
relationship

unknown NAS

MIGS-14 Pathogenicity none NAS

Biosafety level 1 TAS [98]

MIGS-4 Geographic
location

Gulf of Mexico IDA

MIGS-5 Sample
collection

June 1, 2010 IDA

MIGS-4.1 Latitude 28°43.967 N IDA

MIGS-4.2 Longitude 88°22.993 W IDA

MIGS-4.4 Altitude not specified
aEvidence codes - IDA inferred from direct assay, TAS traceable author statement
(i.e., a direct report exists in the literature), NAS non-traceable author statement
(i.e., not directly observed for the living, isolated sample, but based on a generally
accepted property for the species, or anecdotal evidence). These evidence codes
are from the Gene Ontology project [99]
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at 4 °C in the dark. The inoculum for isolation was taken
from the underlying water–oil phase, directly below the
oil layer (Additional file 1: Figure S1), and streaked out
on agar plates (1.5 % w/v) containing 10 % marine broth
(MB 2216, Difco) diluted with artificial seawater [25].
Plates were incubated at 20 °C in the dark until colonies
were visible (2–5 days). For purification single colonies
were picked and transferred at least three times to fresh
plates with the same medium. Tests for purity of the
culture, extraction of chromosomal DNA and sequen-
cing of the 16S rRNA gene sequence were performed
after Giebel et al. [26].
Comparison of the 16S rRNA gene sequence of strain

O3.65 with those of type strains of the Rhodobacteraceae
was performed using the Blast search tool of the
National Center for Biotechnology Information [27]. For
phylogenetic analysis and similarity matrix calculation we
used the ARB software [28]. The tree in Fig. 1 comprises
all currently available genome sequenced Phaeobacter,
Pseudophaeobacter, Leisingera and Ruegeria strains,
covering most of the type strains and species of those
groups and additional genome-sequenced species of the
Roseobacter group.
Based on the 16S rRNA gene sequences a greater

monophyletic cluster, supported by a high bootstrap
value of 94 %, was obtained encompassing strain O3.65

and related sequences, as well as the genera Phaeobacter,
Pseudophaeobacter and Leisingera. Strain O3.65 forms a
subcluster together with the undescribed strain Ruegeria
sp. 39RL_GOM-46 m (SRX711597) isolated from an oil-
amended biotrap, and the clone Oil-BE-016 (KJ475503,
[12]) obtained from an oil slick sample after lab incuba-
tion, both from the DWH oil spill and having a sequence
similarity of 100 and 99 %, respectively. The 16S rRNA
gene sequence of strain O3.65 shows minimal dissimilar-
ities to those of its closest described and validated rela-
tives, i.e. 1.6 % to Phaeobacter inhibens DSM 17395 and
1.7 % to both type strains P. gallaeciensis DSM 26640T

and Phaeobacter inhibens T5T. Dissimilarity values in-
creased up to 1.9 or higher for type species of the genera
Ruegeria, Leisingera and Pseudophaeobacter (Additional
file 1: Table S1; [12, 29–58]). Despite these low dissimi-
larity values, classification of strain O3.65 as a new
Phaeobacter species was not supported by phylogenetic
analysis only on 16S rRNA gene level (Fig. 1). The
clearly separated subcluster of strain O3.65 leads to the
assumption that this organism represents a new phylo-
genetic lineage at the species and genus level. Compara-
tive analysis of genomic data (see below, Fig. 2) supports a
classification as a new genus within the Rhodobacteraceae.
The multitude of recent reclassifications of species within
the Phaeobacter-Leisingera group [29–31, 59] shows the

Fig. 1 Phylogenetic tree highlighting the position of Rhodobacteraceae strain O3.65 relative to other genome sequenced and type strains within
the genera Phaeobacter, Pseudophaeobacter, Ruegeria, Leisingera and additional strains of the Rhodobacteraceae. The tree was inferred from nearly
full-length 16S rRNA gene sequences (≥1300 bp) using the neighbour joining tool of the ARB software [28]. Only bootstrap values ≥50 % (derived
from 1000 replicates) are shown. Filled circles indicate nodes also recovered reproducibly with maximum-likelihood (RAxML) calculation. Strains
and their corresponding GenBank accession numbers are listed in Additional file 1: Table S1. All strains in the tree are genome sequenced, except
clone Oil-BE-016 (KJ475503). Type strains are designated by T. Three Synechococcus strains (AY946243, CP000951, AF448073) served as outgroup
(not shown)
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difficulty of accurate classification of (new) species related
to these closely related genera. Furthermore, we suggest re-
classification of strain Ruegeria sp. 39RL_GOM-46 m based
on a coherent description and validation of strain O3.65 as
member of a new genus in the future.
Besides strain O3.65, we isolated similar organisms with

the same 16S rRNA gene sequence from agar plates inocu-
lated with oil-polluted seawater from another sample taken
at a different station after the DWH oil spill (data not
shown). Furthermore, two independent studies found pre-
viously the same phylotype of strain O3.65 (SRX711597)
and a second phylotype very similar (1382/1383 identities,

[12]) to strain O3.65 in the Gulf of Mexico (see above).
Therefore we conclude that strain O3.65 represents a
physiologically and ecologically relevant ecotype for the
DWH oil spill.
Cells of strain O3.65 are ovoid rods, with a length of

1.3–2.2 μm and a width of 0.6–1.0 μm (Fig. 3). Cells are
motile by means of a polar flagellum. O3.65 is a Gram-
negative, marine, aerobic, mesophilic bacterium with an
optimal growth temperature between 30 and 35 °C and
an optimal salinity between 2.5 and 5 %. On Difco
Marine Broth (MB) 2216 agar (Becton Dickinson, MD,
USA) strain O3.65 forms smooth, shiny and convex

A B

Fig. 2 Tanglegram of genome based trees. a Maximum likelihood tree based on genomic data of organisms affiliated with the genera Phaeobacter,
Pseudophaeobacter, Ruegeria, Leisingera and additional strains of the Roseobacter clade inferred with 500 bootstraps (BS) with RAxML after Stamatakis
(2014) [100]. The alignment was created from 684 orthologous single-copy genes present in all genomes (Multilocus Sequence Analysis; MLSA) after
total protein sequences of the genomes were extracted from the corresponding GenBank files and used for the downstream analysis with an in house
pipeline at the Goettingen Genomics Laboratory (J. Vollmers, unpubl.). In brief, clusters of orthologs were generated using proteinortho version 5 [101],
inparalogs were removed, the remaining sequences were aligned with MUSCLE [102] and poorly aligned positions automatically filtered from
the alignments using Gblocks [103]. b Gene content tree including singletons of the same organisms as in A based on an orthologs-content matrix
representing presence or absence of a gene in a certain genome, inferred with Neighbour Joining (1000 BS). Both scripts for this pipeline, PO_2_MLSA.py
and PO_2_GENECONTENT.py, are available at github. Numbers at the nodes specify BS values ≥50 %. Scale bars represent 10 % sequence divergence. For
Genbank accession numbers see Additional file 1: Table S1. For a clear view only lines were given linking the same species at different positions
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colonies with regular edges of white to light beige color.
Strain O3.65 utilizes pentoses, hexoses and disaccharides
[(+)-L-arabinose, (+)-D-xylose, (−)-D-ribose, (+)-D-glucose
(−)-L-fucose, (−)-D-fructose, (+)-D-cellobiose, (+)-D-
sucrose;1 g/l final] as well as most amino acids (L-forms
of alanine, aspartic acid, glutamic acid, histidine, arginine,
threonine, tryptophane, phenylalanine, proline, leucine,
valine; 1 mM final) as carbon and energy sources. Strain
O3.65 is able to grow on several aromatic compounds,
i.e., 4-hydroxy-benzoic acid, 3,4-dihydroxy-benzoic acid,
p-coumarin, ferulic acid, tryptophan and vanillin.

Genome sequencing information
Genome project history
The genome of strain O3.65 was selected for sequencing
based on its phylogenetic affiliation with the ecologically
important and worldwide distributed Roseobacter clade
and the lack of roseobacteral genomes in the course of
studies on oil degradation of the DWH oil spill. The
genome sequence was completed on February 18th,
2015, and presented for public access on January 19th,
2016. The genome project was deposited in the Ge-
nomes OnLine Database (GOLD) as project Gp0111538.
The Whole Genome Shotgun project has been deposited
at DDBJ/EMBL/GenBank under the accession number
LPUY00000000.1. The version described in this paper
is version 1. Table 2 presents a summary of the project
information.

Growth conditions and DNA preparation
Strain O3.65 was grown at 20 °C in marine broth
(MB2216, Difco) in the dark to the late exponential
phase. Cells were harvested by centrifugation (10 000 g
at 4 °C for 20 min) and subsequent DNA extraction was
performed using a Power Soil DNA Isolation Kit

(MoBio) according to the manufacturer’s specifications.
The protocol includes bead beating for mechanical as
well as chemical methods for cell lysis. A total of 1.3 μg
of DNA was obtained.

Genome sequencing and assembly
Whole-genome sequencing was performed using Illumina
technology. Preparation of a paired-end sequencing library
with the Illumina Nextera XT library preparation kit and
sequencing of the library using the Genome Analyzer IIx
were performed as described by the manufacturer
(Illumina, San Diego, CA, USA). A total of 4.6 million
paired-end reads were derived from sequencing and
trimmed using Trimmomatic version 0.32 [60]. De novo
assembly of all trimmed reads with SPAdes version 3.5.0
[61] resulted in 125 contigs and 71.5-fold coverage.

Fig. 3 Transmission electron micrographs of Rhodobacteraceae strain O3.65. a The typical rod-shaped morphology of a single cell with intact bundle
of flagella, and (b) two cells by binary fission and their flagella. Cells were negatively stained. Scale bars 0.5 μm

Table 2 Project information for Rhodobacteraceae strain O3.65

MIGS ID Property Term

MIGS-31 Finishing quality Draft

MIGS-28 Libraries used Nextera xt

MIGS-29 Sequencing platforms Illumina GAiix

MIGS-31.2 Fold coverage 71.5x

MIGS-30 Assemblers SPAdes v3.5

MIGS-32 Gene calling method Prodigal v2.50

Genome Database release IMG; 2608642179

Genbank ID LPUY00000000.1

Genbank Date of Release January 19th, 2016

GOLD ID Gp0111538

BIOPROJECT PRJNA305382

MIGS-13 Source Material Identifier O3.65

Project relevance environmental
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Genome annotation
Protein-coding genes were identified as part of the
genome annotation pipeline of the Integrated Microbial
Genomes platform using Prodigal v2.50. The predicted
CDS were translated and used to search the CDD,
KEGG, UniProt, TIGRFam, Pfam and InterPro data-
bases. These data sources were combined to assert a
product description for each predicted protein. Non-
coding genes and miscellaneous features were predicted
using tRNAscan-SE [62], RNAmmer [63], Rfam [64],
TMHMM [65] and SignalP [66]. Additional gene predic-
tion analyses and functional annotation were performed
within the IMG-ER platform [67].

Genome properties
The genome statistics are provided in Table 3. The draft
genome of strain O3.65 consists of 125 scaffolds with a
total length of 4,852,484 bp and an overall G + C content
of 61.50 %. Of the 4,654 predicted genes, 4591 (98.65 %)
are protein-coding, and 63 are RNA genes. No pseudo-
genes or CRISPR counts were found. Most of the protein-
coding genes (71 %) were assigned to putative functions.
Besides the chromosome we assume strain O3.65 is carry-
ing at least five extrachromosomal elements derived from
five different typical plasmid repABC-type replication
modules, commonly found within the Rhodobacteraceae
[68]. The number and length of scaffolds of this draft
genome did not allow a detailed view on plasmid
organization. The distribution of genes into COGs func-
tional categories is listed in Table 4.

Insights from the genome sequence
Several pathways in the aerobic hydrocarbon degrad-
ation by ring modifications and alkane hydroxylases are
known and used by members of the Roseobacter group
[9]. Yet, analysis of genomic homology could be difficult
due to the low amount of gene synteny among genomes
of strains even on species level, and the high distribution
of functionally related genes across multiple loci [69]. In
general, strain O3.65 is not able to hydroxylate an
aromatic ring via specific ring hydroxylating dioxy-
genases, such as benzoate 1,2-dioxygenase or naphtha-
lene 1,2-dioxygenase; genes of the protein families
00355, 00848 and 00866 were not found [9]. The draft
genome of strain O3.65 is carrying none or only a low
number of genes (given in parentheses) encoding for
enzymes involved in the cleavage of gentisate (gdo; 0),
the benzoyl-CoA pathway (box; 0) and the meta cleavage
of homoprotocatechuate (hgd; 2 of 7). In contrast, strain
O3.65 does contain several putative ring-cleaving dioxy-
genases: Two aromatic ring-opening dioxygenases, catalytic
subunit, LigB family (TRIHO_09370; TRIHO_18120;
pfam02900), hydroquinol and 1,2-catechol dioxygenases
(TRIHO_05060; TRIHO_09430; pfam04444/pfam 00775),
protocatechuate 3,4-dioxygenase alpha and beta subunit
(TRIHO_21670/60; pfam00755) and at least four catechol
2,3-dioxygenases (TRIHO_03150; TRIHO_07560; TRIHO_
29300; TRIHO_43160 pfam00903, TRIHO_09100; TRIHO_
20770 pfam12681). All those ring-cleaving enzymes are
essential for degrading substances like protocatechuate,
vanillin, 4-hydroxybenzoate, ferulic acid or p-coumarin,
which is consistent with our growth experiments (see
discussion of morphology and physiology above).
However, genes for degradation of hydroxylated aromatic

compounds like p-hydroxybenzoate via protocatechuate
(pca, β-ketoadipate pathway) are present in the genome of
O3.65. For example, the genes pobA and pcaDCHGB
(TRIHO_21630-80) are homologues to genes found in
Silicibacter sp. TM1040 and Ruegeria mobilis 45A6. The
genes pcaIJ (TRIHO_43620/30) of strain O3.65 coding for
the 3-oxoadipate:succinyl CoA transferase are arranged in
the same way as in Citreicella sp. SE45, but the entire
neighboring gene arrangement of both strains differs
completely from those of other Roseobacter representa-
tives. Comparative analysis shows that all Phaeobacter,
Pseudophaeobacter, Leisingera and Ruegeria spp. do not
have the genes pcaIJ for an 3-oxoadipate:succinyl CoA
transferase (EC 2.8.3.6); instead, it seems to be replaced by
an 3-oxoacid CoA-transferase (EC 2.8.3.5) with an AA-
composition similarity of 32 %. Also missing for the above
mentioned genomes, but present for strain O3.65 and lo-
cated next to the subunit pcaIJ, is a regulatory protein
(coded by pcaR; 2609025149, TRIHO_43610) needed for
functionality of the enzyme 3-oxiadipate CoA transferase.
PcaR, characterized for Pseudomonas putida [70] was

Table 3 Nucleotide content and gene count levels of the draft
genome of Rhodobacteraceae strain O3.65

Attribute Genome (total)

Value % of total

Genome size (bp) 4,852,484 100.00

DNA coding (bp) 4,330,569 89.25

DNA G + C (bp) 2,984,418 61.50

DNA scaffolds 125

Total genes 4,654 100.00

Protein-coding genes 4,591 98.65

RNA genes 63 1.35

Pseudo genes 0

Genes in internal clusters

Genes with function prediction 3,868 83.11

Genes assigned to COGs 3,308 71.08

Genes assigned to pfam domains 3,953 84.94

Genes with signal peptides 390 8.38

Genes with transmembrane helices 991 21.29

CRISPR repeats 0
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blasted against the Phaeobacter-Leisingera-group finding
genes with ~30 % similarity, but in distinctly different
neighborhoods than in O3.65, which could imply other
functions of the IclR family (transcriptional regulator,
Pfam01614) to which pcaR belongs. Moreover, no similar
pcaR-genes were found in any genomes of Ruegeria spp.,
underlining its distinctiveness from these two groups. We
assume that strain O3.65 is able to metabolize phenylace-
tic acids via the phenylacetyl-CoA pathway (paa) having
all the necessary genes (paaABCDE), except the catalytic
subunit. However, strain O3.65 is able to grow on phe-
nylalanine, which is degraded via the paa-pathway, like in
P. inhibens DSM 17395 [71]. Besides, strain O3.65 is able
to carry out the degradation of the aromatic intermediate
homogentisate by a specific homogentisate 1,2-dioxygenase
(TRIHO_32660; pfam04209).
Even though strain O3.65 is carrying the gene for an

alkane 1-monooxygenase (pAH1; coded by alkB locus
tag TRIHO_03510) and all genes for the following
pathway steps for metabolizing an alkane into a fatty
acid, it did not exhibit any growth in experiments on
nonane, decane, hexadecane or paraffin. In contrast,

Pseudophaeobacter arcticus DSM 23566T was able to
grow on all those alkanes. Maybe this is caused by the
missing gene coding for rubredoxin reductase (EC
1.18.1.1/4) in strain O3.65, required for the reducing
step of rubredoxin. Rubredoxin and rubredoxin reduc-
tase are essential electron transfer proteins and present
in known alkane degraders like Alcanivorax dieselolei B5
[72]. Notably, this gene is also missing in strain DSM
23566T, leading to the conclusion that there might be
other ways of alkane degradation, as already stated by
Buchan and Gonzalez (2010) [9]. Perhaps EPS [73] or
unknown substances from other oil degrading bacteria
in contaminated seawater could help solubilizing oil sub-
stances, what has to be shown for strain O3.65. If this can
be confirmed, strain O3.65 is involved in the microbial
degradation of n-alkanes, which were found in enhanced
concentrations in the oil-slick as well as polycyclic aro-
matic hydrocarbons of high-molecular weight [18, 74, 75].
In summary, we observed that strain O3.65 is able to

degrade several oil-derived compounds via different
pathways for hydrocarbon degradation. However, the
missing pathways, especially the missing RHD, indicate

Table 4 Number of genes associated with the 25 general COG functional categories of Rhodobacteraceae strain O3.65

Code Value %age Description

J 193 5.19 Translation, ribosomal structure and biogenesis

A n.a. n.a. RNA processing and modification

K 300 8.07 Transcription

L 110 2.96 Replication, recombination and repair

B 3 0.08 Chromatin structure and dynamics

D 39 1.05 Cell cycle control, Cell division, chromosome partitioning

V n.a. n.a. Defense mechanisms

T 58 1.56 Signal transduction mechanisms

M 135 3.63 Cell wall/membrane biogenesis

N 183 4.92 Cell motility

U 64 1.72 Intracellular trafficking and secretion

O 1 0.03 Posttranslational modification, protein turnover, chaperones

C 11 0.3 Energy production and conversion

G 83 2.23 Carbohydrate transport and metabolism

E 156 4.19 Amino acid transport and metabolism

F 249 6.7 Nucleotide transport and metabolism

H 346 9.3 Coenzyme transport and metabolism

I 393 10.57 Lipid transport and metabolism

P 91 2.45 Inorganic ion transport and metabolism

Q 183 4.92 Secondary metabolites biosynthesis, transport and catabolism

R 216 5.81 General function prediction only

S 218 5.86 Function unknown

- 135 3.63 Not in COGs

Abbreviation: n.a. not assigned
The total is based on the total number of protein coding genes in the genome
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that strain O3.65 does not belong to the group of spe-
cialized primary oil-degrading microbes within the
hydrocarbon-degrading metabolic network. Instead,
strain O3.65 belongs to the group of secondary hydro-
carbon consumers feeding on special oil-derived compo-
nents, i.e. “predigested” hydrocarbon fragments or on
non-oil exudates from primary oil degraders. Matching
to this was the found of an Alcanivorax affiliated isolate
in our sample (unpublished data), which are well-known
primary petroleum degraders, commonly rising in num-
bers during oil spills [76].
Using a whole genome comparison approach by multi-

locus sequence analysis, based on 684 orthologous
single-copy genes and by gene content analysis of the
same strains considered as in the 16S rRNA gene
analysis above, separate clustering of strain O3.65 is sup-
ported (Fig. 2). By MLSA and gene content analysis, the
closest related genus of strain O3.65 is not Phaeobacter
(Fig. 1) but Ruegeria, supported by bootstrap values of
100 and 98 %, respectively. Four Ruegeria strains (R. sp.
39RL_GOM-46 m, R. mobilis 45A6, R. sp. TrichCH4B
and R. sp. TM1040), separated from other Ruegeria spp.,
form the sequence cluster adjacent to strain O3.65.
While Ruegeria sp. 39RL_GOM-46 m was obtained from
the same oil-polluted environment and has an identical
16S rRNA gene sequence (Fig. 1), the MLSA or the gene
content approach separate this strain from strain O3.65,
and indicate a different genetic potential and evolution
of both strains. The other three closely related Ruegeria
strains have a 16S rRNA gene dissimilarity of 3.5 % and
4.6 %, respectively. Strains affiliated to Phaeobacter,
Pseudophaeobacter and Leisingera clustered separately
within the single genera in distinct groups, at which
their clustering pattern is nearly identical by both
calculation methods, emphasizing a high stability of the
phylogenetic analyses.
Furthermore, we compared all available genome-

sequenced Phaeobacter, Pseudophaeobacter, Leisingera
and Ruegeria strains covering most of the type strains as
well as type species of those genera and the draft
genome of strain O3.65 by in silico DNA-DNA hybri-
dization using the online tool genome to genome
distance calculator (GGDC 2.0; [77–79]). The DDH
similarities of strain O3.65 to the above mentioned refer-
ence strains are listed in Additional file 1: Table S1. The
highest similarity was found for the genome of strain
Ruegeria sp. 39RL_GOM-46 m with a maximal value of
100 ± 0.1 % implying that strain 39RL_GOM-46 m is
another strain of a new proposed species represented by
Rhodobacteraeae strain O3.65. This high similarity is in
agreement with the 16S rRNA gene sequence similarity.
Further, the GGDC analysis revealed a distinctly low
mean similarity of the O3.65 genome (20.5 ± 4.8 %) com-
pared to all other genomes considered in our study,

including the other three closely related Ruegeria strains
clustering together with strain 39RL_GOM-46 m and all
available genome sequenced types species/strains of the
genera Phaeobacter, Pseudophaeobacter, Leisingera and
Ruegeria. This low similarity on genome level indicates a
significant different genomic repertoire of strain O3.65
compared to its most closely-related neighbors, support-
ing that strain O3.65 represents a new species of a new
genus within the Rhodobacteraceae, not distinguishable
by 16S rRNA gene phylogeny only.
While aerobic anoxygenic photosynthesis is a wide-

spread but phylogenetically dispersed feature among the
Roseobacter group [8] strain O3.65 is not able to use
light via aerobic anoxygenic photosynthesis or rhodop-
sins. However, both types of the coxL gene for the carbon
monoxide dehydrogenase are present, implying a role
within the marine carbon monoxide cycling, because only
strains with both coxL forms (I and II; TRIHO_01790-60
and TRIHO_28700-40) are able to oxidize carbon mo-
noxide [80, 81]. This could provide an additional energy
source for strain O3.65 not available for other non-
chemolithotrophic microbes [82].
Some Roseobacter species are able to synthesize the

essential cofactor biotin, e.g. P. gallaeciensis BS107 and
Ruegeria sp. R11 [83]. No genes for biotin synthesis were
found in the genome of strain O3.65, as shown previ-
ously for Ruegeria sp. TM1040 and R. pomeroyi DSS-3
[83]. Therefore, bacteria missing the synthesis apparatus
of biotin are equipped with a highly affine (or high-
affinity) biotin uptake system present in strain O3.65,
and homologous to those in Leisingera caerulea DSM
24564T and Leisingera methylohalidivorans MB2T/DSM
14336T.
An in silico analysis for secondary metabolites via the

online tool antiSMASH 3.0 [84] revealed secondary me-
tabolite clusters for bacteriocin, lassopeptide, ectoine
and a type 1 polyketide synthase (PKS). PKSs mediate
the biosynthesis of bioactive natural substances and are
known for the genus Phaeobacter [85]. Genes encoding
for iron-chelating siderophore biosynthesis and trans-
port, commonly found in Phaeobacter and Leisingera
species [29, 32, 33], are also present in genome of strain
O3.65. The operon for biosynthesis (TRIHO_27280) is
homologous to those in P. inhibens T5T and the
Ruegeria sp. strains TrichCH4B and TM1040. The
operon coding for the uptake of siderophores (TRIHO_
36570) is homolog to those in R. mobilis 45A6 and
Ruegeria sp. TrichCH4B. Strain O3.65 is lacking genes cod-
ing for AHL synthetase proteins, described for P. inhibens
T5T [29] and P. gallaeciensis DSM 26640T [34]. Moreover,
the AHL synthetase protein was found in all genomes of
the type strains of the Leisingera, Pseudophaeobacter and
Ruegeria group listed in this study (Additional file 1:
Table S1) with the exception of R. mobilis NBRC101030T.
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Several Phaeobacter strains [35, 85–89], including the P.
inhibens strains DSM 17395 and T5T as next described
species to strain O3.65, are able to produce the antibiotic
TDA and a brownish pigment [85]. These Phaeobacter-
typical characteristics were not found to be encoded in
the genome of strain O3.65 and could not be observed
phenotypically.
Strain O3.65 is carrying at least three operons for the

secretion system type IV (virB), which are versatile and
involved in conjugation, DNA uptake or in effector trans-
location [90]. (TRIHO_37480, homolog to Roseovarius sp.
217, TRIHO_40140, TRIHO_41580 homolog to Oceanibul-
bus indolifex HEL-45T). Furthermore, genes for the flp pilus
type IV are present in genome of strain O3.65, known to
play important roles in surface adhesion, biofilm formation,
motility, conjugation, and DNA transfer and uptake, with
significant effects for pathogenicity [91] (TRIHO_20800
homolog to R. mobilis 45A6 and Ruegeria sp. TrichCH4B-
TRIHO_30860 homolog to R. mobilis 45A6 and Ruegeria
sp. TM1040).
Our data of the draft genome revealed a diverse com-

position of several genes and functional operons of
strain O3.65 originated from different phylogenetic
groups, which was derived by their homologies. Having
both opportunities to exchange or uptake DNA by pilus
and secretion systems could be an explanation for carry-
ing such a brought mixture of Ruegeria-, Phaeobacter-
and Leisingera-like genes. Besides, this could elucidate
the discrepancy of the phylogenetic classification based
on 16S rRNA gene sequences and the genome based ap-
proaches (Figs. 1 and 2, see above).

Conclusion
The differences detected based on the genomic and
physiological data of strain O3.65 compared to previ-
ously described organisms within the Rhodobacteraceae,
especially to the genus Phaeobacter, suggests that strain
O3.65 represents a member of a new species within a
new genus. The multitude of recent reclassifications of
several strains within the Rhodobacteraceae, especially
within the genera Phaeobacter and Leisingera [29–31,
59] shows the difficulty to accurately classify (new) spe-
cies related to these phylogenetic clades based only on
16S rRNA gene level, and supports our suggestion of a
new genus to avoid a misleading phylogenetic classifica-
tion a priori. Strain O3.65 is lacking several features typ-
ical for the genus Phaeobacter, e.g. production of the
antibiotic TDA and AHLs, pigmentation, the hgd-
pathway and biotin synthesis. Even though based on 16S
rRNA gene comparison the closest described strain is
Phaeobacter inhibens DSM 17395, high genetic exchange
of strain O3.65 with members of the genus Ruegeria is
indicated by the MLSA and gene content analysis based
on whole genome information. Strain O3.65 is able to

degrade hydroxylated aromatic compounds by several
pathways, but is lacking genes to utilize alkanes. However,
strain O3.65 represents a new, abundant and ecologically
relevant microbial species within the hydrocarbon degrad-
ing microbial community of the DWH oil spill. We assume
that strain O3.65 belongs to the group of secondary hydro-
carbon consumers feeding on special oil-components, on
“predigested” hydrocarbon fragments, or on non-oil exu-
dates from primary oil degraders.

Additional file

Additional file 1: Figure S1. Enrichment culture of surface seawater
contaminated with weathered oil (slicks) from the Deepwater Horizon
(DWH) oil spill with oil and oil–water phase. From the latter, indicated
by an arrow, Rhodobacteraceae strain O3.65 was isolated. Table S1.
Dissimilarity (%) based on 16S rRNA gene sequence comparison 29 and
in silico DNA-DNA hybridization (DDH) of strain O3.65 using 16S rRNA
gene sequences and genomes of (typeT31) strains of the genera
Phaeobacter, Pseudophaeobacter, Leisingera, Ruegeria and other relevant
strains. The neighbor-joining distance matrix tool of the ARB software
was used for calculation of 16S rRNA gene similarity. DDH was done
using the genome to genome distance calculator (GGDC 2.0, DSMZ,
http://ggdc.dsmz.de/distcalc2.php, [77, 78]) and represents values of the
recommended formula 2 [79]. Table sorted by increasing dissimilarity.
(PDF 262 kb)
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