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Metagenome phylogenetic profiling of
microbial community evolution in a
tetrachloroethene-contaminated aquifer
responding to enhanced reductive
dechlorination protocols
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Abstract

Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols
can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways,
however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome
techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we
compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site
before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured
microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the
injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared
for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA
fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using
Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log2 fold increase in
biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of
genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change
abundance data and use Zipf’s power law to filter genera with low read counts. Plotting the log-rank against the
log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive
dechlorination protocol. Members of the Archaea domain increased 4.7 log2 fold, dominated by methanogens. Prior
to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant
decreases five months after biostimulation. Geobacter and Sulfurospirillum replace “Sideroxydans” and Burkholderia as
the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of
dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring
archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially
pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.
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Introduction
Contamination of groundwater with chlorinated solvents
is a major threat to potable water supplies, but the chal-
lenge of remediating contamination can be addressed by
exploiting the metabolism of microbial communities.
While qPCR and microarrays are effective tools for
designing and monitoring remediation strategies [1–3],
whole metagenome phylogenetic profiling provides
unparalleled opportunities to understand the genetic re-
sponse of microbial communities to remediation strat-
egies. A proof-of-concept project was undertaken to
determine the efficacy of whole metagenome profiling of
aquifer-borne microbial consortia in a tetrachloroethene-
contaminated EPA superfund site to increase our under-
standing community response to biostimulation.
Tetrachloroethene (also known as perchloroethylene)

is a solvent used for dry cleaning since the 1930s. PCE is
now a common contaminant of groundwater that is a
likely carcinogen [4]. The daughter products of PCE bio-
degradation include TCE, cis and trans isomers of DCE,
VC, and ethene. VC is the most toxic of these com-
pounds and a major problem is the stalling of biodegrad-
ation. Enhanced in-situ biodegradation involves the
addition of electron donor or food source (substrate),
electron acceptors, nutrients, and/or selective cultures of
beneficial microbes into the subsurface to accelerate the
rate of biodegradation. RD is a biodegradation process
that is restricted to anaerobic conditions capable of elim-
inating PCE and its daughter products. The selection of
appropriate electron donors is an important site-specific
component for ERD. Although our current knowledge of
the microbes and the biochemical pathways involved RD
is largely limited to species that can be cultured, reduc-
tive anaerobic biological in-situ treatment technology
augmentation protocols create favorable environmental
conditions for RD microbial consortia [5]. This study
compares two whole metagenomes from the same well
within a PCE-contaminated aquifer one month before
and five months after biostimulation with electron do-
nors and nutrients. This is part of a larger study that in-
cludes two additional time points (23 and 43 months)
for this well, and similar points for an additional well on
the NRAP site.

Site information
In 1989, PCE and TCE were detected in municipal water
supply wells operated by the City of Española, New
Mexico. The source of the contamination was a 58-acre
(0.23 km2), 260-foot (79.2 m)-deep plume of PCE from a
now closed dry cleaner and laundromat located on
North Railroad Avenue. Because this aquifer is the sole
source drinking water aquifer for Española, the Santa
Clara Pueblo, and nearby populations, the NRAP site
was designated an EPA Superfund site in 1999 (National

Priorities List #NMD986670156). Some minor soil con-
tamination was found near the PCE surface release at
NRAP; however, most of the contaminant mass was in
the shallow saturated zone and occurred as high-level,
adsorbed- and dissolved-phase PCE in the aquifer
beneath the release area (source area). Prior to remedy
implementation the dissolved-phase plume migrated to
within the boundaries of the Santa Clara Pueblo trust
lands above maximum allowable contaminant levels.
The selection of a remediation strategy relied on the

analysis of groundwater using established regulatory
guidelines for geochemical and contaminant chemistry
[6], and commercially available molecular biological
techniques [7]. As per ITRC protocols water quality pa-
rameters such as dissolved oxygen, temperature, pH,
oxidation-reduction potential, and specific conductance
were monitored in the field. Laboratory analyses
included a suite of geochemical parameters shown in
Table 10. Data from DGGE of 16S rRNA genes, PLFA
analysis, and a qPCR screen for dechlorinating bacteria,
was obtained from Microbial Insights, Inc. (Rockford,
TN). Genera detected by DGGE included Dechloromonas,
Sulfurimonas, Thiomicrospira, Sulfurovum, Gallionella,
and Zoogloea. PLFA analysis indicated the presence of
Firmicutes and anaerobic metal reducing bacteria. The
presence of indigenous dechlorinating genera detected
by qPCR included Dehalococcoides, Desulfuromonas,
and Dehalobacter, indicating that the addition of non-
indigenous microbes (known as bioaugmentation) was
unnecessary. This data indicated the appropriate remedial
action for NRAP was biostimulation, achieved by injecting
the bioamendments EVO, a nutrient mix, and the addition
of hydrogen gas as an electron donor [7].
Figure 1 shows the progress of VOC conversions dur-

ing pilot scale remediation operations at NRAP. Prior to
the addition of bioamendments, the majority (~97%) of
the chloroethenes were in the form of PCE. TCE
(~1.0%) and DCE isomers (~1.5%) accounted for the
remaining mass; and VC was not detected in any of the
wells sampled. By comparison, in October 2007, a large
majority of the contaminant mass was transformed from
PCE to cis-DCE. More than three-quarters (~77%) was
cis-DCE while 20% remained as PCE. TCE and VC
accounted for the remaining portion at 1.5% each.
Ethene production was evident by January 2008.

Metagenome sequencing information
Metagenome project history
NRAP was sampled four times for nucleic acid analysis
starting in 2007; once one month prior to, then at five,
23, and 43 months following the addition of bioamend-
ments. The two time points selected for this preliminary
study were during the pilot-scale operations at NRAP,
one collected prior to the initiation of bioremediation
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and one collected five months after the initial injections
of EVO, nutrient mix, and H2 (Fig. 1). Study information
is shown in Table 1.

Sample information
The sampling events analyzed as part of the pilot project
occurred on 15 June 2007 (SAE3-0) and on 27 November
2007 (SAE3-5) at the NRAP site in Española, NM
(latitude: 35.992053, longitude: −106.079752, and a depth
of 2.9 m.) Sample information is provided in Table 2 as
per minimal information standards [8]. The exact time of
sampling was not recorded, but both samples were ex-
tracted from the well in the afternoon, at approximately
14 h local time.

Sample preparation
Suspended solids, including microbes were collected on-
site by filtering the water through a Gelman 0.2 micron
filter capsule (Cat. #12117, Pall Gelman, Ann Harbor,
MI) attached to the discharge of a dedicated, submers-
ible pump for SAE3. The volume of water filtered was
monitored and filtration was allowed to proceed until
the flow was reduced due to clogging of the filter. Filters
were sealed with entrained water and residue and

transported to the laboratory on ice. Filter residues, in-
clusive of captured microbes and particulates, were re-
covered by shaking the filters overnight on a Berrell
wrist-action shaker (Model 75, Philadelphia, PA)
followed by back flushing the filter with sterile 10 mM
Tris-SO4 at a pH 7.8. Samples were concentrated by
centrifugation at 25,000 x g for 30 minutes. The result-
ing pellet was resuspended in Tris-SO4 and frozen at
−20 °C without cryopreservation for nucleic acid
extraction.

DNA extraction
Microbial eDNA was extracted from the uncultured but
concentrated microbial samples SAE3-0 and SAE3-5
using protocols for microbes pursuant to the G-nome®
DNA isolation kit (Qbiogene Cat # 2010–200, Carlsbad,
CA), consisting of treatment with RNase, lysis of the
cells, protease treatment, and precipitation of the protein
and lipids with high salt. The eDNA in the resulting
supernatant was collected and precipitated by the
addition of 1/10 volume of 3 M sodium acetate and 2.5
volumes of ethanol. The eDNA was further purified with
a Geneclean® Turbo-Kit (Qbiogene cat #1102-200)
following the manufacturer’s protocol, which involves

Fig. 1 Heat map of TOC and VOCs during pilot scale operations at NRAP. Up- arrows indicate when microbial samples were collected; down
arrows indicate when bioamendments were injected into the aquifer
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binding eDNA to a resin in a high-salt solution, rinsing
with a high-salt buffer followed by elution in a low-salt
buffer (1 mM Tris-pH 8.0, 10 mM EDTA). The eDNA
quality was assessed by agarose gel electrophoresis and
quantity determined by UV spectroscopy on a Nanodrop
ND-1000 (Thermo Scientific, DE, USA).

Library generation
The eDNA from SAE3-0 and SAE3-5 were subjected
to Illumina paired-end sequencing protocols at the
National Center for Genome Resources (NCGR) in
Santa Fe, New Mexico. The purified eDNA was sub-
jected to mechanical fragmentation by nebulization
and the resulting double-stranded overhang fragments
were end-repaired, phosphorylated, and ligated to
proprietary adapter oligonucleotides (Illumina Cat #
PE-102-1001). Ligation products were size-selected by
gel electrophoresis and the 400 bp fraction excised.
Purified DNA libraries were subjected to a final PCR
amplification step (10 cycles). The index sequences,
oligos six bp in length, were added during the PCR
enrichment step in order to allow for the pooling of mul-
tiple samples in a single lane of an Illumina IIx flowcell.
All amplified libraries are quantitatively and qualitatively
assessed by Nanodrop ND-1000 UV/Vis spectroscopy and
in a DNA Bioanalyzer 2100 (Agilent, CA, USA).

Sequencing technology
Ninety bp from each end of the 400 bp fragments were
sequenced on the Illumina Genome Analyzer IIx.
Sequencing analysis resulted in two files per library, each
representing the results from one of each end of the
fragment. This sequencing protocol resulted in approxi-
mately 7.8 million 90 bp reads of data per file, for a total
of 2.8 Gbp of data in a single lane (Table 3). Two files
were generated for each sample, one for each end of the
molecule.

Sequence processing, annotation, and data
analysis
Sequence processing
Sequence reads that passed the quality control measures
established by Illumina were uploaded to the MG-RAST
version 3.0 server [9, 10]. MG-RAST applies additional
quality control parameters, determines the guanine and
cytosine content (% G + C) for each read, and provides
an estimate of sequencing errors using the DRISEE
algorithm [11].

Metagenome processing
MG-RAST compares every read to the non-redundant
database M5NR, which includes inferred protein sequences
[10]. There are two MG-RAST files for SAE3-0 library that
represent each end of the insert; these are EW3Pre1 and
EW3Pre2 while the SAE3-5 library files for each end are
referred to as EW3Post1 and EW3Post2. The results of se-
quence processing are shown in Table 4. The metagenome
data are available as MG-RAST project number 11259, the
North Railroad Avenue Plume EPA Superfund Site.

Metagenome annotation
The results of MG-RAST phylogenetic analysis include
the number reads that match each OTU, and three other
attributes: the average percent identity, the average
alignment length, and the average expectation (e-value).
The cutoff value for the minimum percent identity was
60%, the maximum e-value was 10−5, and the minimum
average alignment length was 15 Bp. These data were

Table 2 Sample information

Label SAE3-0 SAE3-5

GOLD ID (biosample) NA NA

Biome Freshwater Freshwater

Feature Superfund site Superfund site

Material Ground water Ground water

Latitude and
Longitude

35.992056, −106.07975 35.992056, −106.07975

Vertical distance −2.9 m −2.9 m

Geographic location Española, New
Mexico, USA

Española, New
Mexico, USA

Collection date
and time

13/06/07, 14 h (UTC-6) 27/11/07, 14 h (UTC-7)

Table 1 Study information

Label SAE3-0 SAE3-5

MG-RAST ID EW3Pre1 (4447797.3)
EW3Pre2 (4447834.3)

EW3Post1 (4447837.3)
EW3Post2 (4447838.3)

SRA ID or ENA ID NA NA

Study North Railroad Avenue Plume EPA Superfund Site North Railroad Avenue Plume EPA Superfund Site

GOLD ID (sequencing project) NA NA

GOLD ID (analysis project) NA NA

NCBI BIOPROJECT NA NA

Relevance Bioremediation of contaminated groundwater Bioremediation of contaminated groundwater
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downloaded and read into the statistical software JMP®
11 (SAS, Cary, North Carolina) for distribution, statis-
tical analyses, and plotting.

Post-processing
The read counts from each end of the DNA fragment
identified as a genus-level OTU were used as proxies for
replicates providing a measure of the noise in the HTS
process. The baySeq algorithm assumes a negative biono-
mical distribution and uses a Bayesian approach to deter-
mine significant differences between high-throughput
sequencing data sets and was used to assign FDRs to each
genus [12]. Zipf ’s law (a.k.a. the power law) [13] was used
to determine a cut-off for genera with low frequencies.
Annotations based on metabolic characteristics were

based on literature references or the Joint Genome Insti-
tute Integrated Microbial Genomes database [14]. Metha-
nogens [15], SRB [16, 17], DHB [18], FeOB [19], SOB [20],
and nitrifying bacteria [21] were manually annotated in
the dataset.

Metagenome properties
The microbial slurries extracted from the filters exhib-
ited a dramatic color shift, from tan in SAE3-0 to black
in SAE3-5 (Fig. 2), indicating a shift from an aerobic to
anaerobic condition following the addition of the bioa-
mendments. The DNA yield increased from 1.3 to
16.1 μg DNA per L water, indicating a 3.6 fold increase
in biomass. A 9% decrease (79 out of 869) in the number
of genera annotated was observed after remediation.
The overall properties of the SAE3-0 and SAE3-5

metagenomes are provided in Tables 5, 6, and 7. The
level of sequencing errors (the DRISEE score) in the
dataset that passed both instrumental and MG-RAST
QC metrics falls well within one standard deviation of
the 6.4 mean for all the MG-RAST data. Between 86.0%
and 97.3% of reads were assigned to an OTU.
A distinctive shift toward decreased %G+C content is

evident following biostimulation (Fig. 3). One explanation
is that this change indicates shift toward species with
lower %G+C, but it may also reflect recombinational pro-
cesses during microbial evolution that facilitates horizon-
tal transmission of genes. For example, Dehalococcoides
codons tend toward high %G+C content, but the genes
specific for VC respiration are composed of codons with
low %G + C content that are flanked by mobile genetic el-
ements, indicating that these genes are a relatively recent
acquisition of the Dehalococcoides genome [22]. The

Table 3 Library information

Label SAE3-0 SAE3-5

Sample Label(s) SAE3-0 SAE3-5

Sample prep method G-nome® DNA
isolation kit,
Geneclean® Turbo-Kit

G-nome® DNA
isolation kit,
Geneclean® Turbo-Kit

Library prep method Illumina Paired-End
DNA Sample Prep Kit

Illumina Paired-End
DNA Sample Prep Kit

Sequencing platform Illumina IIx Illumina IIx

Sequencing
chemistry

TruSeq SBS v3 TruSeq SBS v3

Sequence size (Gbp) 1.4 1.4

Number of reads 15,503,268 15,877,664

Single-read or paired-
end sequencing?

Paired-end Paired-end

Sequencing library
insert size

400 400

Average read length 90 90

Standard deviation
for read length

1 1

Table 4 Sequence processing

Label SAE3-0 SAE3-5

Tool(s) used for quality control MG-RAST (default) MG-RAST (default)

Number of sequences removed
by quality control procedures

1,870,805 1,240,627

Number of sequences that passed
quality control procedures

13,632,463 14,637,037

Number of artificial duplicate
reads

1,646,292 1,013,551

Fig. 2 Color shift in microbial samples. The tube on the left is the
sample collected one month prior to application of remediation
protocols, the tube on the right is the sample collected five months
after the addition of EVO, nutrients, and hydrogen gas to the aquifer
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biological significance of the shift in %G+C content at
NRAP remains to be determined, but similar changes are
observed in other microbial communities [23].

Taxonomic diversity
The phyla level taxonomic diversity at NRAP is shown
in Table 8. All taxa detected by DGGE (Dechloromonas,
Sulfurimonas, Thiomicrospira, Sulfurovum, Gallionella,
and Zoogloea) and PLFA (Firmicutes, Proteobacteria,
Anaerobic Metal, SRB/Actinomycetes) are detected in both
metagenomes. Data obtained from Microbial Insights
using qPCR indicate increases in Dehalococcoides, Desul-
furomonas, and Dehalobacter, but Dehalobacter is missing
from the metagenomic dataset that relies on protein
features for annotation, although a few matches (<10) to
Dehalobacter are detected as RNA features in SAE3-5.
Dehalobacter and Dehalococcoides are known to compete
with each other [24], making it possible that popula-
tion fluctuations rendered Dehalobacter barely detect-
able when the metagenomic samples were collected.
In addition, Dehalobacter may not be required for suc-
cessful remediation, as it was not detected in DehaloR^2;
a TCE dechlorinating consortium isolated from sediment
and analyzed by 16S rRNA and qPCR [25]. Dehalobacter
abundance and its role in this successful remediation pro-
ject are under investigation.
Members of the genus Geobacter exhibit a dramatic

increase in abundance, increasing from 0.8 to 21% of all
prokaryotes. This group was not measured as part of
qPCR, DGGE, or PLFA experiments. G. lovleyi is an
iron-reducing dechlorinator [26] that becomes the

dominate species in response to ERD (Fig. 5). G. lovleyi
and other members of this genus, including G. sulfurre-
ducens and G. uraniireducens, are capable of transmit-
ting electrons over special pilli known as microbial
nanowires [27]. These species are capable of direct inter-
species energy transfer, a recently recognized character-
istic of biofilms capable of bioremediation [28, 29].
Geobacter as well as SRB are detected during uranium
bioremediation [30]. G. lovleyi can transfer cobamide to
Dehalococcoides in culture, indicating that these species
form an important metabolic link during ERD [31].
Dehalococcoides mccartyi are the only microbes cur-

rently known to fully respire PCE to ethene [32]; this spe-
cies exhibit a 0.5 log2 fold change increase in abundance
at NRAP, an outcome consistent with effective ERD [25].
Matches to D. mccartyi strains 195, GT and VS, CBDB1,
and BAV are detected at NRAP. This finding is consistent
with pangenomic microarray results for Dehalococcoides
enrichment cultures, in which heterogeneous mixtures of
reductive dehalogenase genes are found, indicating the
presence of a mixture of species with dehalorespiration
abilities [33, 34]. A dechlorinating enrichment cultures is
known to contain a variety other phylogenetic groups

Table 6 Annotation parameters

Label SAE3-0 SAE3-5

Annotation system MG-RAST MG-RAST

Gene calling program FraGeneScan FraGeneScan

Annotation algorithm MG-RAST MG-RAST

Database(s) used MNR5 MNR5

Table 5 Metagenome statistics

Label SAE3-0 SAE3-5

Libraries used SAE3-0 SAE3-5

Assembly tool(s) used NA NA

Number of contigs after assembly NA NA

Number of singletons after assembly NA NA

minimal contig length NA NA

Total bases assembled NA NA

Contig n50 NA NA

% of Sequences assembled NA NA

Measure for % assembled NA NA

Table 7 Metagenome properties

Label SAE3-0 SAE3-5

Number of contigs NA NA

Gbp 1,226,921,670 1,317,333,330

Number of features identified 6,589,534 6,873,193

CDS 4,786,768 5,056,492

rRNA 1,802,766 1,816,701

others 0 0

CDSs with COG 1,468,398 1,648,018

CDSs with Pfam

CDS with SEED subsystem

Alpha diversity 217.523 196.901
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Fig. 3 Percent G + C shift at NRAP. A major peak at 60% is observed
prior to remediation, but a bimodal distribution is observed with
peaks at 45% and 60% G + C after bioamendment application
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[35], all of which increase at NRAP. Following six months
of ERD at the NRAP site vinyl chloride was just beginning
to increase (Fig. 1), so the small increase in Dehalococ-
coides is consistent with contaminant levels and it is
expected that Dehalococcoides will increase in subsequent
sampling events.
Dehalogenimonas lykanthroporepellens is another

DHB of the phylum Chloroflexi that exhibits a similar

level of increase as other members of Dehalococcoidia at
NRAP. D. lykanthropore was first isolated from a chlori-
nated solvent Superfund site in Louisiana [36, 37] and
has been detected in contaminated aquifers in Europe
[38]. Other dehalorespiring species include the Firmi-
cutes Desulfitobacterium and the Deltaproteobacteria
Desulfovibrio; both increase in abundance at NRAP, con-
sistent with findings from RD enrichment cultures [39].

Table 8 Taxonomic composition

Phylum SAE3-0
CPMa

SAE3-5
CPM

Log2 Fold-Change Total Raw Counts

Proteobacteria 902,173.65 777,848.47 −0.21 14,270,944

Firmicutes 18,007.05 56,618.88 1.65 665,155

Euryarchaeota 2,431.96 64,504.59 4.73 616,044

Bacteroidetes 14,088.27 33,537.14 1.25 420,818

Actinobacteria 17,115.85 10,802.99 −0.66 234,150

Cyanobacteria 11,765.89 11,318.40 −0.06 196,982

Chlorobi 4,290.76 6,684.93 0.64 95,503

Planctomycetes 6,289.51 2,718.90 −1.21 74,466

Chloroflexi 4,178.12 4,307.47 0.04 72,617

Verrucomicrobia 3,266.26 2,962.45 −0.14 53,021

Acidobacteria 2,671.54 2,687.13 0.01 45,811

unclassified (derived from Bacteria) 2,923.61 1,836.12 −0.67 39,911

Spirochaetes 1,307.70 3,105.62 1.25 38,993

Aquificae 952.30 2,758.34 1.53 32,993

Deinococcus-Thermus 1,709.80 1,658.48 −0.04 28,752

Thermotogae 8,47.05 2,259.90 1.42 27,555

Nitrospirae 1,631.34 1,515.31 −0.11 26,812

Deferribacteres 497.52 2,447.58 2.30 26,552

Synergistetes 430.03 2,233.53 2.38 24,042

Fusobacteria 482.21 2,029.32 2.07 22,561

Chrysiogenetes 301.95 1,136.92 1.91 12,889

Lentisphaerae 257.31 1,129.68 2.13 12,472

Chlamydiae 514.61 618.05 0.26 9,754

Crenarchaeota 371.35 654.25 0.82 8,966

Elusimicrobia 146.83 828.32 2.50 8,817

Gemmatimonadetes 471.62 239.12 −0.98 5,910

Tenericutes 198.75 394.06 0.99 5,205

Dictyoglomi 132.67 356.46 1.43 4,339

unclassified
(derived from Archaea)

72.84 344.47 2.24 3,759

Fibrobacteres 81.77 232.31 1.51 2,791

Thaumarchaeota 226.18 104.16 −1.12 2,737

Candidatus Poribacteria 135.61 71.53 −0.92 1,725

Korarchaeota 22.07 46.03 1.06 599

Nanoarchaeota 6.00 9.08 0.60 131
aCPM: Counts per million. Normalized values were calculated by dividing the abundance for each genera by the column total and multiplying by 106.
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The increase in Epsilonproteobacteria is lead by the
genus Sulfurospirillum, which exhibits the largest increase
(8.2 log2 fold change) in abundance in response to ERD.
Of the two species OTUs found at NRAP, one is capable
of halorespiration (“S. multivorans”) and is found at other
chlorinated solvent contaminated sites [40]. Other chemo-
lithotropic Epsilonproteobacteria genera that increase in
response to the bioamendment are Sulfuricurvum, a
sulfur-oxidizing facultative anaerobe first isolated from
oil-storage containers [41] as well as Caminibacter [42],
Nitratifractor [43], Nautilia [44], and Sulfurovum [45];
each of which were first isolated from deep-sea hydrother-
mal vents. The pathogenic branch of Epsilonproteobac-
teria is also represented at NRAP and provides additional
evidence for groundwater as a reservoir for emerging
pathogens [45]. Moreover, and of concern in the design,
operation, and monitoring of an ERD remediation
process, these potential pathogens were seen to increase
in abundance following the addition of bioamendments
(Fig. 5d). Two similar species that were observed to in-
crease in abundance are Arcobacter nitrofigilis [46], which
is a non-pathogenic nitrogen-fixing species and Arcobac-
ter butzleri, known to cause diarrhea in humans [47].
Other examples of pathogenic OTUs that increased in
abundance following the addition of bioamendments in-
clude Campylobacter jejuni, a well-characterized food and
water-borne pathogen [48] and Helicobacter pylori, which
is linked to gastric ulcers and other gastrointestinal
syndromes [49]. Although Epsilonproteobacteria play an
important role in the bioremediation process, these data
indicate that testing for pathogenic bacteria is warranted
when certifying that a formerly contaminated water source
that has undergone treatment by ERD is safe.
The genus Desulfuromonas includes dehalorespiring

species, although none of the species detected at NRAP
are known to have this ability. De novo alignment and an-
notation is necessary to determine if a new dehalorespiring
strain can be identified.
“Anaeromyxobacter dehalogenans” is one of three spe-

cies of this Deltaproteobacteria genus detected at NRAP
and it is capable of aryl-halorespiration. Matches to the
L-haloacid dehalogenases present in the genomes of Pyr-
ococcus horikoshii [50] and Sulfolobus tokodaii [51] are
detected at NRAP. As members of thermophilic Ar-
chaea, these are unlikely matches since the average
groundwater temperature at NRAP during the sampling
period was 18.6 °C, far below the range for thermophiles.
Additional data collection is underway to facilitate de
novo alignment of NRAP genomes and to identify alter-
native dehalogenation pathways.
In addition to the Deltaproteobacteria and phyla Chloro-

flexi and Firmicutes, methanogenic Archaea carry out key
steps in the metabolic pathways during RD [33] and all
three phylogenetic groups increase during the first five

months of remediation. The dramatic increase in methano-
genic Archaea (Fig. 5c) also explains the increase of on-site
methane concentrations in the shallow vadose zone, an im-
portant consideration for safe ERD design and operation.

Functional diversity
Table 9 lists the functional diversity of the metagenomes
from a protein-centric perspective using COG annota-
tions. The availability of qPCR, PLFA, and DGGE data
collected to determine the optimal remediation protocol
provides evidence for the functional diversity of microbes,
not just the genes. This facilitates a focus on shifts in
taxonomy that occur in response to bioremediation that
led to the degradation of PCE.

Statistical and visualization results
It can be difficult to determine an appropriate level of
coverage for further examination. Here we turn to the
Zipf ’s law and plot the log10 reads per genus against the
log2 of the genus rank and annotate the with the -log10
FDRs (Fig. 4). A clear inflection marks delineates where
a logical cut-off can be made. For our preliminary ana-
lyses, genera with a total of 1000 counts or greater
chosen for further annotation and visualization. This
filtering step results in 579 genus-level OTUs retained of
the 869 total (67%).
To visualize the ecological shifts in the community, we

employ a modified rank abundance curve, in which the
abundance variable is replaced by log2 fold-change
(Fig. 5) for each prokaryotic genera. Using this conven-
tion, the genera that increase as a result of biostimula-
tion are located to the right of 0, those that decrease
graph to the left. All genera are detectable before re-
mediation, indicating that any non-indigenous bacteria
introduced into the aquifer by injection of bioamend-
ments have no affect on the ecology. Seventy-nine gen-
era are not detected after remediation protocols, this
decrease in diversity is expected as the community
adapts to the availability of EVO as carbon source. The
shape of the markers indicates the taxonomic affiliation
of selected genera (Fig. 5a) highlights the phylogenetic
shift in the community in response to remediation. Al-
though the proteobacteria exhibit little change overall
(Table 8), 81 out of 83 of Alphaproteobacteria, all 50

Table 9 Functional diversity

COG Category Metagenome SAE3-0 Metagenome SAE3-5

Cellular processes and
signaling

337,528 395,668

Information storage and
processing

303,004 291,760

Metabolism 650,216 750,444

Poorly characterized 177,649 210,146
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Betaproteobacteria, and all 89 Gammaproteobacteria gen-
era decrease in abundance. Twenty-one out of 27 Delta-
proteobacteria and all 13 Epsilonproteobacteria are more
abundant after remediation. The expansion of Archaea is
dominated by increases in methanomicrobia (12/12).
The phenotypic characteristics of interest in bioremedi-

ation are polyphyletic, so it is necessary to consider

relevant metabolic classifications independent of taxon.
The rank fold-change plot can be further annotated to
visualize multiple metabolic attributes of the data. In
Figs. 5b-5d, selected metabolic categories are highlighted
by color and facilitate the correlation of changes in
groundwater chemistry to the taxonomic changes in the
microbial community. The increase in ferrous iron

Fig. 5 Rank abundance fold-change plot of genera detected at the NRAP site. Each of the 569 genera has at least 1000 reads and are ranked by
their abundance on the y-axis. On the x-axis, those to the left of zero decrease in abundance after six months, those to the right increase. The
number of genera in each category is indicated in parentheses. The labeled genera are discussed in the text. a Selected classes are indicated by
marker shape. b The metabolic classification of genera is indicated by color. c Methanogenic and dehalogenic bacteria are highlighted by color.
d Oxygen requirements for selected genera are indicated by color and demonstrates that the remediation protocol selects for anaerobic species.
The labeled species are potential pathogens
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Fig. 4 Zipf curve. Plotting the log reads per genus against the genus rank reveals an inflection point that separates genera with coverage within
a linear from those with limited coverage. Genera with less than 1000 reads were excluded from subsequent analyses
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detected in source area groundwater following the
addition of EVO (Table 10) is consistent with the decrease
in FeOB and increase in the FeRB (Fig. 5b). The surge in
SRB reflects the decrease in sulfate and explains the un-
pleasant odor encountered during the November
sampling. Genera that include species capable of dehalo-
genation and methanogenesis are notated by color in
Fig. 5c; both increase. The shift toward anaerobic condi-
tions in the aquifer is confirmed in Fig. 5d, in which the
oxygen requirement of genera for which data are available
are indicated by color.

Conclusions
We demonstrate the efficacy of whole metagenome se-
quencing as a tool to understand ERD and developed a

statistical approach and a visualization method that aids
this goal. The major difficultly with annotating plots
with metabolic data is the lack of a single, authoritative
source for metabolic characteristics of bacterial species.
Most of the annotation was done manually by consulting
the literature. Although the Joint Genome Institute pro-
vided a method of annotating genomes with metabolic
classifications, few of the genomes detected are anno-
tated by metabolic data. Despite this issue, it is clear that
geochemical changes are correlated to the shift in the
microbial community. Taxa capable of dehalorespiration
and methanogenesis increase, as do species that thrive in
anaerobic conditions, supporting the established princi-
ples of ERD. The importance of Geobacter in bioremedi-
ation is confirmed by NRAP data. Additionally, there are

Table 10 Geochemical Parameters and Contamination Concentrations

Classification Parameter Units SAE3-0 a

Mean ± SD
SAE3-5 b

Mean ± SD
Log2 Fold-Change

Dissolved Gas by Headspace Methane μg/L BDLc (<1.0) 6540.0 ± 4292.8 13.7

Ethene μg/L BDL (<2.0) BDL (<2.0) 0

Ethane μg/L BDL (<2.0) BDL (<2.0) 0

Anions Chloride mg/L 73.7 ± 1.4 83.4 ± 4.7 0.2

Bromide mg/L 2.66 ± 2.21 2.48 ± 0.37 −0.1

Nitrogen, Nitrate (as N) mg/L 2.05 ± 0.15 BDL (<0.26) −4.0

Sulfate mg/L 213.3 ± 5.2 27.5 ± 30.5 −3.0

Metals Dissolved Fe mg/L 0.22 ± 0.08 9.66 ± 9.93 5.5

Total Mn mg/L 0.19 ± 0.04 7.54 ± 0.48 5.3

Volatiles PCE μg/L 9966.7 ± 1672.9 157.2 ± 196.3 −5.9

TCE μg/L 74.7 ± 38.5 223.4 ± 249.6 1.6

Cis-1,2-DCE μg/L 390.0 ± 114.7 7840.0 ± 3266.2 4.3

Trans-1,2-DCE μg/L BDL (<125) 143.40 ± 62.90 6.8

Vinyl chloride μg/L BDL (<50) 53.6 ± 21.5 6.7

Total VOCs μM 61.248 ± 10.298 85.892 ± 32.489 0.5

TOC TOC mg/L 2.13 ± 0.08 104.40 ± 28.95 5.6

Alkalinity Total (as CaCO3) mg/L 311.7 ± 4.1 684.0 ± 89.9 1.1

Carbonate mg/L BDL (<2.0) BDL (<2.0) 0

Bicarbonate mg/L 311.7 ± 4.1 684.0 ± 89.9 1.1

Hydroxide mg/L BDL (<2.0) BDL (<2.0) 0

Sulfide mg/L BDL (<1.0) 3.28 ± 1.79 2.7

CO2 Total CO2 mg/L 291.7 ± 7.5 716.0 ± 103.6 1.3

Field Data Temperature (°C) °C 16.723 ± 1.276 20.118 ± 1.844 0.3

Dissolved O2 mg/L 0.227 ± 0.166 0.074 ± 0.057 −1.6

pH 7.250 ± 0.301 7.270 ± 0.334 0.004

Oxidation-reduction potential −12.97 ± 46.96 −247.72 ± 44.07 −4.3

Conductivity ms/cm3 1.1923 ± 0.1222 1.6318 ± 0.1367 0.5
aEach value is the average of six geochemical sampling events prior to sampling.
bEach value is the average of five geochemical sampling events in Nov. 2007, prior to sampling.
cOne-half of the BDL divided by the dilution factor was used to calculate fold-change. For trans-1,2,-DCE and VC the sample dilution factor was 50. No dilution
was used for all other BDL sample results (dilution factor = 1)
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findings from these metagenomes that suggest topics for
future discoveries. The NRAP data suggests that unchar-
acterized Archaea may also play a role in successful
bioremediation of chlorinated solvents. The presence of
pathogenic OTUs indicates that testing prior to re-
certification of aquifer as potable is a concern. As add-
itional data is obtained from NRAP, de novo alignment
and annotation of NRAP genomes will increase our un-
derstanding of ERD and its role in biodegradation.
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