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High quality draft genome of Nakamurella
lactea type strain, a rock actinobacterium,
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lactea
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Abstract

Nakamurella lactea DLS-10T, isolated from rock in Korea, is one of the four type strains of the genus Nakamurella. In
this study, we describe the high quality draft genome of N. lactea DLS-10T and its annotation. A summary of
phenotypic data collected from previously published studies was also included. The genome of strain DLS-10T

presents a size of 5.82 Mpb, 5100 protein coding genes, and a C + G content of 68.9%. Based on the genome
analysis, emended description of N. lactea in terms of G + C content was also proposed.
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Introduction
The genus Nakamurella, belong to the order Nakamur-
ellales [1] and is one of the rare genera in the class
Actinobacteria [2]. The genus Nakamurella is the sole
and type genus of the family Nakamurellaceae, which
replaced the family Microsphaeraceae [2] in 2004 [3].
The genus and family names were assigned in honour
of the microbiologist Kazonuri Nakamura [4].
Only four species with validly published names,

Nakamurella multipartita [3, 5], Nakamurella pana-
cisegetis [6, 7], Nakamurella flavida [6–8], and
Nakamurella lactea [6, 7, 9], have been described,
and only the genome of Nakamurella multipartita
has been published [10].
N. lactea was originally described as Saxeibacter lac-

teus [9], which was the type species of one of the three
genera comprising in the family Nakamurellaceae. Then,
in the light of the 16S rRNA gene and rpoB gene se-
quences similarities and chemotaxonomic features [6], the
species was reclassified into the genus Nakamurella.
Nakamurella lactea is represented by the type strain DLS-
10T (= DSM 19367T = JCM 16024T = KCTC 19285T).

The availability of the genome of one more species in
the genus will provide vital baseline information for bet-
ter understanding of the ecology of these rare actinobac-
teria and their potential as source of bioactive natural
products. In the present study, we summarise the
phenotypic, physiological and chemotaxonomic, features
of N. lactea DLS-10T together with the genomic data.

Organism information
Classification and features
N. lactea DLS-10T was isolated from a rock collected on
the parasitic volcano Darangshi Oreum at 300 m above
sea level in Jeju island, Republic of Korea (latitude 33.51,
longitude 126.52) [9]. It has been shown by Lee et al. [9]
and Kim et al. [4, 6] that its cells are aerobic, non-
motile, non-spore and non-mycelium forming short rods
with 0.4–0.7 μm and 0.9–1.0 μm of cell diameter and
length, respectively (Fig. 1), producing cream-coloured
colonies on TSA medium. A summary of the classifica-
tion and general features of N. lactea strain DLS-10T is
presented in the Table 1. Additional phenotypic features
can be found in Lee et al. and Kim et al. [6, 9].
Only four species isolated from soil (N. panacisegetis

and N. flavida), rock (N. lactea) and sludge (N. mutipar-
tita), respectively, are currently classified in the genus.
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Due to this limited number of the characterised species,
the ecological diversity as well as the biotechnological po-
tential of the members of the genus Nakamurella remain
to be studied in depth.
Phylogenies based on 16S rRNA gene sequences in-

cluded in this manuscript were performed using the
GGDC web server [11] implementation of the DSMZ
phylogenomics pipeline [12]. The multiple alignment
was created with MUSCLE [13] and maximum likeli-
hood (ML) and maximum parsimony (MP) trees were
inferred from it with RAxML [14] and TNT [15],
respectively. For ML, rapid bootstrapping in conjunc-
tion with the autoMRE bootstopping criterion [16]
and subsequent search for the best tree was used; for
MP, 1000 bootstrapping replicates were used in con-
junction with tree-bisection-and-reconnection branch
swapping and ten random sequence addition repli-
cates. This analysis shows the family Nakamurellaceae
[4] as the sister group of the families Cryptosporangia-
ceae, Sporichthyaceae, and Geodermatophilaceae. The
monophyly of the genus Nakamurella was supported
by (close to) maximum bootstrap values under ML
and MP (Fig. 2).

Chemotaxonomic data (optional, Heading 3)
Glucose, mannose, ribose and rhamnose were detected
as the whole-cell sugars [5]. The pattern of polar lipid
contains diphosphatidylglycerol, phosphatidylethanol-
amine, phosphatidylinositol, aminophospholipid, five
unidentified phosphoglycolipids, and one unidentified
glycolipid [6].
The diagnostic peptidoglican is the meso-diaminopimelic

acid. The major fatty acids are anteiso-C15:0, C16:0, iso-C16:0,
and anteiso-C17:0 [9]. MK-8(H4) and MK-9(H4) are the pre-
dominant menaquinones but MK-7(H4) was also revealed
in a low amount [6].

Genome sequencing information
Genome project history
N. lactea DLS-10T (DSM 19367T) was selected for
sequencing on the basis of its phylogenetic position [17,
18], and is part of Genomic Encyclopedia of Type

Fig. 1 Scanning electron micrograph of N. lactea DLS-10T. The bac-
terium was grown on DSM medium 65 for 3 days at 28∘C

Table 1 Classification and general features of Nakamurella
lactea strain DLS-10T, according to the MIGS recommendations
[36] as developed by [22]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [39]

Phylum Actinobacteria TAS [40]

Class Actinobacteria TAS [2]

Order Nakamurellales TAS [1]

Family Nakamurellaceae TAS [41]

Genus Nakamurella TAS [3, 41]

Species Nakamurella lactea
Type strain DLS-10

TAS [6, 9]

Gram stain Positive TAS [6, 9]

Cell shape Rod TAS [6, 9]

Motility non-motile TAS [6, 9]

Sporulation Non-sporulating NAS [6, 9]

Temperature
range

4–37 °C TAS [6, 9]

Optimum
temperature

25 °C TAS [6, 9]

pH range 5.1–9.1 TAS [6, 9]

pH Optimum 6.0–7.0

Carbon
source

L-Arabinose, myo-inositol and me-
thyl α-D-mannoside, D-cellobiose,
D-fructose, D-glucose, D-galactose,
lactose, D-maltose, D-mannitol, D-
mannose, L-rhamnose, salicin, su-
crose and D-trehalose, D- turanose

TAS [6, 9]

MIGS-6 Habitat Rock TAS [9]

MIGS-6.3 Salinity Up to 3% NaCl TAS [6, 9]

MIGS-22 Oxygen
requirement

Aerobic TAS [9]

MIGS-15 Biotic
relationship

free-living TAS [9]

MIGS-14 Pathogenicity non-pathogen NAS

MIGS-4 Geographic
location

Korea TAS [9]

MIGS-5 Sample
collection

Not reported TAS []

MIGS-4.1 Latitude 33.51 TAS [9]

MIGS-4.2 Longitude 126.52 TAS [9]

MIGS-4.4 Altitude 300 m TAS [9]
aEvidence codes are from of the Gene Ontology project [42]. TAS traceable
author statement (i.e., a direct report exists in the literature)
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Strains, Phase I: the one thousand microbial ge-
nomes project [19], a follow-up of the Genomic
Encyclopedia of Bacteria and Archaea pilot project
[20], which aims at increasing the sequencing cover-
age of key reference microbial genomes and to gen-
erate a large genomic basis for the discovery of
genes encoding novel enzymes [21]. KMG-I is the
first of the production phases of the “Genomic
Encyclopedia of Bacteria and Archaea: sequencing a
myriad of type strains” initiative [22] and a Genomic
Standards Consortium project [23]. The project and
the genome sequence are deposited in the Genome
OnLine Database [24] and Genbank under the acces-
sion number AUFT00000000.1. In Table 2, we
summarize genome sequence project.

Growth conditions and genomic DNA preparation
A N. lactea DLS-10T culture was prepared in DSM
medium 65 [25] at 28 °C. Genomic DNA was extracted
using MasterPure™ Gram Positive DNA Purification Kit
(Epicentre MGP04100) following the standard protocol
provided by the manufacturer but modified by the incu-
bation on ice overnight on a shaker, the use of additional
1 μl proteinase K, and the addition of 7.5 units achro-
mopeptidase, 7.5 μg/μl lysostaphine, 1050.0 units lyso-
zyme, and 7.5 units mutanolysine. DNA is available from
DSMZ through the DNA Bank Network [26].

Genome sequencing and assembly
The draft genome of N. lactea DLS-10T was generated at
the DOE Joint genome Institute (JGI) using the Illumina

Fig. 2 Maximum likelihood phylogenetic tree of N. lactea DLS-10T and related type strains within the related families constructed under the GTR +GAMMA
model and rooted using Actinomyces bovis NCTC 11535T as outgroup. The branches are scaled in terms of the expected number of substitutions per site
(see size bar). Support values from maximum-likelihood (left) and maximum-parsimony (right) bootstrapping are shown above the branches if equal to or
larger than 60%
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technology [27]. An Illumina standard shotgun library was
constructed and sequenced using the Illumina HiSeq 2000
platform, which generated 13,910,936 reads totalling
2,086.6 Mb. All general aspects of library construction and
sequencing performed at the JGI can be found at http://
www.jgi.doe.gov. All raw Illumina sequence data was
passed through DUK, a filtering program developed at JGI,
which removes known Illumina sequencing and library
preparation artefacts (unpublished results). Following steps
were then performed for assembly: (1) filtered Illumina
reads were assembled using Velvet (version 1.1.04) [28], (2)
1–3 kb simulated paired end reads were created from Vel-
vet contigs using wgsim (https://github.com/lh3/wgsim),
(3) Illumina reads were assembled with simulated read pairs
using Allpaths–LG (version r42328) [29]. Parameters for
assembly steps were: 1) Velvet (velveth:63 –shortPaired and
velvetg: −very clean yes –exportFiltered yes –min contig
lgth 500 –scaffolding no–cov cutoff 10) 2) wgsim (−e 0 –1
100 –2 100 –r 0 –R 0 –X 0) 3) Allpaths–LG (PrepareAll-
pathsInputs:PHRED 64 = 1 PLOIDY= 1 FRAG COVER-
AGE= 125 JUMP COVERAGE= 25 LONG JUMP COV=
50, RunAllpathsLG: THREADS = 8 RUN= std shredpairs
TARGETS = standard VAPI WARN ONLY=True OVER-
WRITE =True). The final draft assembly contained 31 con-
tigs in 27 scaffolds. The total size of the genome is 5.8 Mb
and the final assembly is based on 712.8 Mb of Illumina
data, which provides an average 122.5X coverage of the
genome.

Genome annotation
The complete genome sequence was annotated using the
JGI Prokaryotic Automatic Annotation Pipeline [30] with
additional manual review using the Integrated Microbial
Genomes - Expert Review (IMG-ER) platform [31]. The
predicted CDSs were translated and used to search the

National Center for Biotechnology Information (NCBI)
non redundant database, UniProt, TIGRFam, Pfam,
KEGG, COG, and InterPro databases. The tRNAScanSE
tool [32] was used to find tRNA genes, whereas ribosomal
RNA genes were found by searches against models of the
ribosomal RNA genes built from SILVA [33]. Other non–
coding RNAs such as the RNA components of the protein
secretion complex and the RNase P were identified by
searching the genome for the corresponding Rfam profiles
using INFERNAL [34]. Additional gene prediction analysis
and manual functional annotation was performed within
the Integrated Microbial Genomes (IMG) platform [35,
36] developed by the Joint Genome Institute, Walnut
Creek, CA, USA [37].

Genome properties
The 5820860 bp of genome size of N. lactea DLS-10T

presents 5100 protein-coding genes, 3 rRNA genes (5S,
16S, 23S RNA) and 59 tRNA genes. A G + C content of
68.9% was calculated. More genome details are listed in
Tables 3 and 4.

Conclusion
The genome of N. lactea will be used to study, for the
first time, its potential as bioactive natural products
source and the correlation between the rare soil bacteria
and their habitat. According to [38], the within-species
deviation in genomic G + C content is at most 1%. The
range of 70.4–74.3% given in by Kim et al. [6] is thus
too broad and too deviating from the 68.9% calculated
in the genome sequence, much like the value 74.3%

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Level 1: Standard Draft

MIGS-28 Libraries used NOHX

MIGS 29 Sequencing platforms Illumina, Illumina HiSeq 2000

MIGS 31.2 Fold coverage NA

MIGS 30 Assemblers Allpaths/Velvet

MIGS 32 Gene calling method Prodigal 2.5

Locus Tag K340

Genbank ID AUFT00000000.1

GenBank Date of Release 2013-06-03

GOLD ID Gi11889

BIOPROJECT PRJNA195807

MIGS 13 Source Material Identifier DSM 19367T

Project relevance GEBA-KMG, Tree of Life

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 5820860 100.00

DNA coding (bp) 5332245 91.61

DNA G + C (bp) 4011790 68.92

DNA scaffolds 27 100.00

Total genes 5169 100.00

Protein coding genes 5100 98.67

RNA genes 69 1.33

Pseudo genes 231

Genes in internal clusters 588 11.38

Genes with function prediction 4048 78.31

Genes assigned to COGs 3321 64.25

Genes with Pfam domains 4211 81.47

Genes with signal peptides 432 8.36

Genes with transmembrane helices 1206 23.33

CRISPR repeats 1
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provided by Lee et al. [9]. This calls for an emendation
of the species description [38].

Emended description of Nakamurella lactea (Lee
et al. [9]) Kim et al. [6]
The properties are as given in the species description by
Kim et al. [6] with the following emendation. Based on
the genomic data the G + C content is 68.9%.
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