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Abstract

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced
genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole
genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic
characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis,
then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and
3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was
determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam
domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in
Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking
differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways
were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains
eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks.
Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the
Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti.
Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.
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Introduction
Species of the genus Deinococcus have been studied for their
extreme IR resistance since the isolation of Deinococcus
radiodurans in 1956 [1]. Since then, many other species of
the same genus have been isolated. The current number of
recognized Deinococcus species is greater than 50 while
there are more than 300 non-redundant 16S rRNA
sequences of the family Deinococcaceae in the ARB project
database [2]. Apart from Deinococcus ficus KS 0460,
only a few other representatives have been studied in
detail for their oxidative-stress resistance mechanisms:
D. radiodurans, Deinococcus geothermalis and Deinococcus
deserti [3]. The picture that has emerged for the life cycle
of most Deinococcus species is one comprised of a cell-
replication phase that requires nutrient-rich conditions,
such as in the gut of an animal, followed by release, drying
and dispersal [1]. Desiccated deinococci can endure for
years, and, if blown by winds through the atmosphere, are

expected to survive and land worldwide. As reported, some
deinococci become encased in ice, and some entombed in
dry desert soils. High temperatures also are not an obstacle
to the survival of some deinococcal species. D. geothermalis
and Deinococcus murrayi were originally isolated from hot
springs in Italy and Portugal, respectively [1]. The pros-
pects of harnessing the protective systems of D. radiodur-
ans for practical purposes are now being realized.
The complete genome sequence presented here is for D.

ficus KS 0460, originally named Deinobacter grandis KS
0460, isolated in 1987 from feces of an Asian elephant
(Elephas maximus) raised in the Ueno Zoological Garden,
Tokyo, Japan (Table 1) [4]. Later, Deinobacter grandis was
renamed Deinococcus grandis [5]. Strain KS 0460 was
acquired by USUHS from the originating laboratory in
1988 by Kenneth W. Minton and has been the subject of
study here ever since. As a candidate for bioremediation
of radioactive DOE waste sites [6] and a target of study for

Table 1 Classification and general features of Deinococcus ficus KS 0460 according to MIGS recommendations [49]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [50]

Phylum Deinococcus-Thermus TAS [51, 52]

Class Deinococci TAS [53, 54]

Order Deinococcales TAS [5]

Family Deinococcaceae TAS [5, 55]

Genus Deinococcus TAS [5, 55]

Species Deinococcus ficus TAS [4, 9]

Strain: KS 0460

Gram stain Variable TAS [4, 9]

Cell shape Rod TAS [4, 9]

Motility Non-motile TAS [4, 9]

Sporulation None TAS [4, 9]

Temperature range Mesophile TAS [4, 9]

Optimum temperature 30-37 °C TAS [4, 9]

pH range; Optimum e.g. 5.5–10.0; 7.0 TAS [4, 9]

Carbon source Glucose, fructose TAS [9]

MIGS-6 Habitat Elephas maximus feces TAS [4]

MIGS-6.3 Salinity 1% NaCl (w/v) TAS [4]

MIGS-22 Oxygen requirement Aerobic TAS [4]

MIGS-15 Biotic relationship Free-living NAS

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic location Tokyo/Japan TAS [4]

MIGS-5 Sample collection 1987 TAS [4]

MIGS-4.1 Latitude Non reported

MIGS-4.2 Longitude Non reported

MIGS-4.4 Altitude Non reported
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are
from the Gene Ontology project [56]
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DNA repair [7], D. ficus KS 0460 was chosen for whole
genome sequencing. The D. ficus KS 0460 genome now
adds to the growing number of sequenced Deinococcus
species needed to decipher the complex extreme IR resist-
ance phenotype. To date, a genetic explanation for the
complex survival tactics of deinococci has not been
provided by comparative genomics or transcriptomics [8].

Organism information
Classification and features
In a chemotaxonomic study published in 1987, an isolate
(strain KS 0460) from γ-irradiated feces of an Asian
elephant yielded an IR-resistant bacterium with a wall
structure, cellular fatty acid composition, and GC content
typical of members of the genus Deinococcus [4]. However,
strain KS 0460 was rod-shaped and grew as pink-
pigmented colonies, whereas most other deinococci grow
as diplococci/tetracocci and yield red colonies. The ori-
ginal isolate was named Deinobacter grandis, but was later
renamed Deinococcus grandis based on its close phylogen-
etic relationship (16S rRNA sequences) with deinococci
[5]. Strain KS 0460 was subsequently included in experi-
mental IR survival studies together with other Deinococcus
species, where it was referred to as grandis [7]. Our 16S
rRNA phylogenetic analysis confirms that strain KS 0460

belongs to the genus Deinococcus, most closely related to
the type strain of Deinococcus ficus DSM 19119 (also
referred to as CC-FR2-10) (Fig. 1).
Consistent with the original description of D. ficus KS

0460, the rod-shaped cells are 0.5 to 1.2 μm by 1.5 to
4.0 μm (Fig. 2a) and grow as pink colonies [4, 9]. D. ficus
KS 0460 was shown to have a D10 of approximately
7 kGy (Co-60) (Fig. 2b) and is capable of growth under
chronic γ-irradiation at 62 Gy/h (Cs-137) (Fig. 2c). The
cells are aerobic, incapable of growth under anaerobic
conditions on rich medium, irrespective of the presence
or absence of chronic IR (Fig. 2c). The general structure
of the D. ficus KS 0460 genome was analyzed by PFGE
of genomic DNA prepared from embedded cells. The
plugs containing digested cells were exposed to 200 Gy
prior to electrophoresis, a dose gauged in vitro to induce
approximately 1 DNA double strand break per chromo-
some in the range 0.5 - 2 Mbp [10]. Fig. 2d shows the
presence of the five largest genomic partitions: main
chromosome (~2.8 Mbp), 3 megaplasmids (~500 kb,
~400 kb and ~200 kbp) and one plasmid (~98 kbp),
predicting a genome size ~4.0 Mbp. We did not observe
the smallest genome partition (0.007 Mbp) by PFGE.
The growth characteristics of D. ficus KS 0460 in liquid
culture at 32 and 37 °C (Fig. 2e) are very similar to D.

Fig. 1 16S rRNA phylogenetic tree of the Deinococcus genus. The multiple alignment of 16S rRNA sequences was constructed using MUSCLE
program [58] with default parameters. The maximum-likelihood phylogenetic tree was reconstructed using the FastTree program [59], with GTR
substitution matrix and gamma-distributed evolutionary rates. The same program was used to compute bootstrap values. Truepera radiovictrix was
chosen as an outgroup. D. ficus KS 0460 is marked in red, D. ficus DSM 19119/CC-FR2-10 [9] - in green, completely sequenced according to NCBI
genomes - in purple
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Fig. 2 Deinococcus ficus KS 0460 (EXB L-1957) phenotype. a Transmission electron micrograph. D. ficus grown in TGY, early-stationary phase. b
Survival of D. radiodurans BAA-816 (red), D. ficus (blue), and E. coli (strain K-12, MG1655) (black) exposed to acute IR. The indicated strains were
inoculated in liquid TGY and grown to OD600 ~ 0.9. Cells were then irradiated on ice with Co-60. c D. ficus is an aerobe capable of growth under
62 Gy/h. DR, D. radiodurans; DF, D. ficus; EC, E. coli. d PFGE of genome partitions in a 0.9% agarose gel. PFGE conditions: 0.5 × TBE, 6 V/cm with a
10 to 100 s switch time ramp at an included angle of 120°, 14 °C, 18 h. M, marker S. cerevisiae YNN (BioRad). e Growth curves at 37 °C (blue) and
32 °C (black) in TGY medium. f ICP-MS on Mn and Fe content of D. radiodurans BAA-816 and D. ficus. Inset: Mn/Fe ratios. g Protease secretion
assay. Halos indicate activity of proteases [60]. Strains: 1. D. radiodurans BAA-816, 2. D. geothermalis DSM 11300, 3. D. ficus KS 0460, 4. D. murrayi
(MD591), 5. D. radiopugnans (MD567), 6. D. radiodurans (MD878, SX-108-7B-1, [61]), 7. D. proteolyticus (MD568), 8. D. proteolyticus (MD628,
[62]), and 9. D. proteolyticus (MD869). h Antioxidant capacities of D. radiodurans BAA-816 (red), D. ficus (blue), and E. coli (strain K-12, MG1655)
(black) ultrafiltrates assessed by antioxidant assay as described previously [63, 64]. Net AUC is an integrative value of a total fluorescence during
antioxidant reaction in the presence of ultrafiltrates
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radiodurans [11]. It is unknown if strain D. ficus KS
0460 is genetically tractable because the cells are natur-
ally resistant to the antibiotics tetracycline, chloram-
phenicol and kanamycin at concentrations needed to
select for plasmids and integration vectors designed for
D. radiodurans [12] (data not shown). D. ficus KS 0460,
like other deinococci, accumulate high concentrations of
Mn2+ (Fig. 2f ) [7, 13]. Bacterial Mn2+ accumulation was
previously shown to be important to extreme IR resist-
ance, mediated by the Mn transport gene nramp and
ABC-type Mn-transporter gene [14]. We also showed
that D. ficus KS 0460 produces proteases, as detected in a
protease secretion assay on an indicator plate containing
skimmed milk (Fig. 2g). For example, in D. radiodurans,
the products of proteases – peptides – form Mn2+-binding
ligands of Deinococcus Mn antioxidants, which protect
proteins from IR-induced ROS, superoxide in particular
[8, 13, 15]. Finally, we show that D. ficus KS 0460 cells have
a high intracellular antioxidant capacity (Fig. 2h), which is a
strong molecular correlate for IR resistance [1, 11].

Extended feature descriptions
16S rDNA gene phylogenetic analysis was based on
sequences from 22 type strains of genus Deinococcus
including ten from completely sequenced genomes, and
two from Deinococcus ficus strains KS 0460 and DSM
19119; and Truepera radiovictrix DSM 17093, the distinct
species shown to be an outgroup to the Deinococcus genus
[16]. The maximum-likelihood phylogenetic trees were
reconstructed using two approaches: (i) the FastTree pro-
gram [17], with GTR substitution matrix and gamma-
distributed evolutionary rates and maximum-likelihood
algorithm; and (ii) PHYML program with the same
parameters (Fig. 1 and Additional file 1: Figure S1) [18].
Both D. ficus strains, as expected, group together, but the
position of this pair in both trees is poorly resolved (37
support value for FastTree method and 44 for PHYML
method) potentially because of the long branch of this
clade. In both trees, however, the D. ficus clade confidently
groups deep in the Deinococcus tree within the branch
with D. gobiensis as a sister clade.

Genome sequencing information
Genome project history
Deinococcus ficus KS 0460 was obtained from the Oyaizu
laboratory and was entered into the Daly strain collec-
tion at USUHS on November 18, 1997. The strain was
submitted to the EX Culture Collection, Mycosmo,
Slovenia, on December 29, 2016 and was issued an
accession number EXB L-1957. The genome of D. ficus
KS 0460 was sequenced at the JGI. The project was initi-
ated in 2009, the genome was released on August 26,
2012 as “Deinococcus sp. 2009”. The genome of D. ficus
KS 0460 has the status of an improved high-quality

draft. The genome assembly and annotation can be
accessed through the JGI genome portal [19] and also
GenBank [20]. The genome is considered to be near-
complete. The search for bacterial Benchmarking
Universal Single-Copy Orthologs [21] found a compar-
able number of orthologs in D. ficus KS 0460 and in ten
complete Deinococcus species genomes. Furthermore, of
the 875 genes representing the core genome of the same
ten complete Deinococcus species as determined by the
GET_HOMOLOGUES pipeline [22], only five genes
were missing from D. ficus KS 0460.

Growth conditions and genomic DNA preparation
D. ficus KS 0460 was recovered from a glycerol frozen
stock on TGY solid rich medium (1% bactotryptone, 0.1%
glucose, and 0.5% yeast extract, 1.5% w/v bacto agar)
(3 days, 32 °C) with following inoculation of 25 ml TGY
medium. The culture was grown up to OD600 ~ 0.9. Sub-
sequently, 19 ml were used to inoculate 2 L of TGY
medium and the culture was grown at 32 °C, overnight in
aerated conditions in a shaker incubator (200 rpm). The
cells were harvested at OD600 ~ 1.6. The DNA was iso-
lated from a cell pellet (5.6 g) using Jetflex Genomic DNA
Purification Kit (GENOMED, Germany). The final DNA
concentration was 80 μg ml−1, in a volume of 800 μl. The
DNA was RNA free and passed quality control.

Genome sequencing and assembly
The draft genome of D. ficus KS 0460 was generated at
the JGI using Illumina data (Table 2) [23]. Two paired-
end Illumina libraries were constructed, one short-insert
paired-end library (the length of paired-end reads was
150 bp for the short insert library, average insert size of
222 +/− 50 bp), which generated 16,857,646 reads, and
one long-insert library (average insert size of 7272 +/−
729 bp), which generated 24,172,042 reads totaling 4946
Mbp of Illumina data. All general aspects of library con-
struction and sequencing were performed at the JGI
[19]. The initial draft assembly contained 9 contigs in 8
scaffolds. The initial draft data was assembled with
Allpaths, version r38445, and the consensus was compu-
tationally shredded into 10 kbp overlapping fake reads
(shreds). The Illumina draft data was also assembled
with Velvet, version 1.1.05 [24], and the consensus
sequences were computationally shredded into 1.5 kbp
overlapping fake reads. The Illumina draft data was
assembled again with Velvet using the shreds from the
first Velvet assembly to guide the next assembly. The
consensus from the second Velvet assembly was shred-
ded into 1.5 kbp overlapping fake reads. The fake reads
from the Allpaths assembly, both Velvet assemblies,
and a subset of the Illumina CLIP paired-end reads were
finally assembled using parallel phrap, version 4.24 (High
Performance Software, LLC). Possible misassemblies
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were corrected with manual editing in Consed [25–27].
Gap closure was accomplished using repeat resolution
software [Wei Gu, unpublished], and sequencing of
bridging PCR fragments with Sanger and/or PacBio
technologies [Cliff Han, unpublished]. A total of 21 PCR
PacBio consensus sequences were completed to close
gaps and to raise the quality of the final sequence.

Genome annotation
The genome sequence was annotated using the JGI
Prokaryotic Automatic Annotation Pipeline [28] and fur-
ther reviewed using the Integrated Microbial Genomes -
Expert Review platform [29]. Genes were predicted using
Prodigal [30], followed by a round of manual curation
using the JGI GenePRIMP pipeline [31]. The genome
sequence was analyzed and released publicly through the
Integrated Microbial Genomes platform [32]. BLASTClust
was used to identify internal clusters with thresholds of
70% covered length and 30% sequence identity [33].
SignalP [34] and TMHMM [35] were used to predict signal
peptides and transmembrane helices, respectively.

Genome properties
The D. ficus KS 0460 genome consists of a 4,019,382 bp
sequence which represents six genome partitions: 2.84, 0.49,
0.39, 0.20, 0.098 and 0.007 Mbp (Table 3), consistent with
PFGE (Fig. 2d); note, the smallest partition (0.007 Mbp)
was too small to resolve by PFGE. The final assembly was
based on 4946 Mbp of Illumina draft data, which provided

Table 3 Summary of genome: one chromosome and five
plasmids

Label Size (Mbp) Topology INSDC identifier RefSeq ID

Chromosome 2.84 circular ATTJ01000001 ATTJ01000001

Megaplasmid 1 0.49 circular ATTJ01000002 ATTJ01000002

Megaplasmid 2 0.39 circular ATTJ01000003 ATTJ01000003

Megaplasmid 3 0.20 unknown ATTJ01000004 ATTJ01000004

Plasmid 1 0.098 circular ATTJ01000005 ATTJ01000005

Plasmid 2 0.007 circular ATTJ01000006 ATTJ01000006

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality High-Quality Draft

MIGS-28 Libraries used Illumina Standard (short
insert paired-end) and
Illumina CLIP (long insert
paired-end)

MIGS 29 Sequencing platforms Illumina HiSeq 2000 (CLIP
library); Illumina HiSeq 2000
(Standard library); PacBio

MIGS 31.2 Fold coverage 1237×

MIGS 30 Assemblers Allpaths r38445 and
Velvet 1.1.05

MIGS 32 Gene calling method Prodigal within JGI
Prokaryotic Automatic
Annotation Pipeline

Locus Tag DEINO

Genbank ID ATTJ00000000.1

GenBank Date of Release 07/09/2013

GOLD ID Gp0007971

BIOPROJECT PRJNA157079

MIGS 13 Source Material Identifier EXB L-1957

Project relevance DNA repair mechanisms,
bioremediation
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an average of 1237× coverage of the genome. The total
genomic GC content was 69.7% and was similar across all
but the smallest contig, which contained 62.5% GC. The
genome contains 3827 predicted protein-coding genes
and 67 RNA-coding genes (total 3894).

Insights from the genome sequence
Comparative genomic analysis of strain KS 0460 confirmed
the observations made on the basis of the 16S rDNA
sequence (Fig. 1) – that the sequenced strain belongs to D.
ficus and not to D. grandis, as originally reported. This is
exemplified by the existence of long syntenic regions
between the genomes of D. ficus strain KS 0460 and the
type strain of D. ficus DSM 19119 (Fig. 3a), supporting
near-identity between the strains; 16S rDNA sequences of
these two strains are 99% identical. A close relationship
between the strains is also supported by the high (97.8%)
genome-wide average nucleotide identity between the two
genomes as well as the high (0.84) fraction of orthologous
genes (alignment fraction) between them. The suggested
cutoff values for average nucleotide identity and alignment
fraction between genomes belonging to the same species
are 96.5% and 0.60, respectively [36]. The comparison
between D. ficus KS 0460 and D. radiodurans BAA-816 re-
vealed almost no synteny between these genomes (Fig. 3b).
Approximately 76% of the predicted proteins contained
identifiable Pfam domains, and 72% were assigned to COGs
(Tables 4 and 5). Of all D. ficus KS 0460 proteins, 3059 and
2717 had homologues in D. radiodurans BAA-816 and D.
geothermalis DSM 11300, respectively. Two regions with
coordinates 150,375-159,184 and 2,690,525-2,700,151 on
the 2.84 Mbp chromosome [20] were identified as likely
prophages of Myoviridae family using PHAST program

[37]. The largest number of transposable elements belongs
to IS3 family (COG2801). There are 13 copies of this
element in the genome. This transposon is absent in the
genomes of D. radiodurans BAA-816 and D. geothermalis
DSM 11300.

Extended insights
The mapping of D. ficus KS 0460 genes to KEGG path-
ways by KOALA [38] showed that the strain contains the
same DNA replication and repair genes as D. radiodurans,
which were previously shown to be unremarkable [39]
(Additional file 2: Table S1). The most striking differences
between D. ficus KS 0460 and D. radiodurans BAA-816
identified by the comparison of the KEGG pathways were
in purine degradation and nitrogen metabolism. Specific-
ally, compared to D. radiodurans, D. ficus lacks guanine
deaminase, xanthine dehydrogenase/oxidase, urate oxidase
5-hydroxyisourate hydrolase, 2-oxo-4-hydroxy-4-carboxy-

Table 4 Genome statistics

Attribute Value % of Total

Genome size (bp) 4,019,382 100.00%

DNA coding (bp) 3,614,725 89.93%

DNA G + C (bp) 2,803,041 69.74%

DNA scaffolds 6

Total genes 3894 100.00%

Protein coding genes 3827 98.28%

RNA genes 67 1.72%

Pseudo genes 45 1.16%

Genes in internal clusters 982 25.66%

Genes with function prediction 2831 72.7%

Genes assigned to COGs 2747 71.77%

Genes with Pfam domains 2964 76.12%

Genes with signal peptides 458 11.97%

Genes with transmembrane helices 779 20.36%

CRISPR repeats 0 0.00%

Table 5 Number of genes associated with general COG
functional categories

Code Value %age Description

J 226 6% Translation, ribosomal structure and biogenesis

A 0 0% RNA processing and modification

K 166 4% Transcription

L 97 3% Replication, recombination and repair

B 0 0% Chromatin structure and dynamics

D 43 1% Cell cycle control, Cell division, chromosome
partitioning

V 71 2% Defense mechanisms

T 228 6% Signal transduction mechanisms

M 146 4% Cell wall/membrane biogenesis

N 25 1% Cell motility

U 23 1% Intracellular trafficking and secretion

O 125 3% Posttranslational modification, protein
turnover, chaperones

C 152 4% Energy production and conversion

G 179 5% Carbohydrate transport and metabolism

E 280 7% Amino acid transport and metabolism

F 90 2% Nucleotide transport and metabolism

H 149 4% Coenzyme transport and metabolism

I 116 3% Lipid transport and metabolism

P 138 4% Inorganic ion transport and metabolism

Q 58 2% Secondary metabolites biosynthesis, transport
and catabolism

R 217 6% General function prediction only

S 145 4% Function unknown

- 1080 28% Not in COGs

The total is based on the total number of protein coding genes in the genome.
Proteins were assigned to the latest updated COG database using the COGnitor
program [57]. Other functional categories: defense and mobilome account for 2%
and 1%, respectively
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5-ureidoimidazoline decarboxylase, allantoinase, allantoate
deiminase, and the entire urease operon (DRA0311-
DRA0319 in D. radiodurans). In D. ficus KS 0460, these
metabolic disruptions might contribute to the accumula-
tion of Mn2+ antioxidants involved in the protection of
proteins from radiation/desiccation-induced ROS [8]. In
contrast, D. ficus KS 0460 contains eight genes involved in
nitrogen metabolism, namely MFS transporter of NNP
family, nitrate/nitrite transporter NarK, nitrate reductase/
nitrite oxidoreductase alpha subunit, nitrous oxide-
forming nitrite reductase, nitrous oxide reductase, nitrite
reductase (cytochrome c-5 52), nitronate monooxygenase,
hydroxylamine reductase Hcp, and assimilatory nitrate
reductase catalytic subunit NapA, that D. radiodurans
BAA-816 lacks. Other genes present in D. ficus KS 0460
but absent in D. radiodurans BAA-816 are listed in
Additional file 3: Table S2.
Despite the high intracellular Mn concentrations of

Deinococcus species (Fig. 2f), one of the proteins missing
in D. ficus KS 0460 is the homologue of the D.

radiodurans nramp Mn-transporter (DR1709), previously
identified as critical to extreme IR resistance [40, 41]. On
the other hand, D. ficus KS 0460 encodes a manganese/
zinc/iron ABC transport system (KEGG Module M00319)
that is also encoded in the D. radiodurans genome. This
points to the existence of diverse genetic routes to the
complex phenotype of extreme IR resistance even if the
physico-chemical defense mechanisms (accumulation of
Mn and small metabolites) may be the same [42].
The largest protein families expanded in D. ficus KS

0460 include several signal transduction proteins (e.g.
CheY-like receiver domains, diguanylate cyclase,
bacteriophytochrome-like histidine kinase), several families
of acetyltransferases and a stress response protein DinB/
YfiT family (Fig. 4a). Many of these families are known to
be specifically expanded in previously characterized
Deinococcus species (Fig. 4b). Thus, D. ficus displays
the same trend.
In addition to the nramp transporter, other genes

previously considered to be important to IR resistance

A

B

Fig. 4 Expanded protein families in D. ficus KS 0460. a Protein families with 15 or more paralogs in D. ficus genome. COG number and family
name are indicated on the left. b Comparison of protein families found to be specifically expanded in Deinococcus species. Numbers of proteins
correspond to a sum of all COG members indicated in parenthesis on the left. Abbreviations: DF, D. ficus KS 0460; DR, D. radiodurans BAA-816; DG,
D. geothermalis DSM 11300; DD, D. deserti VCD115; TT, Thermus thermophiles HB27. Results for DinB/YfiT family were identified using COG2318
and pfam05163
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are missing in the genome of D. ficus KS 0460, namely,
the proteins DdrF, DdrJ and DdrK, all of which are also
missing in D. deserti [3, 40]. DdrO and IrrE proteins
found to be key players in regulation of irradiation
responses in D. radiodurans and D. deserti [43, 44] are
present in D. ficus KS 0460 (DeinoDRAFT_1503 and
DeinoDRAFT_1002, respectively). This suggests that the
same regulatory pathways are likely active in D. ficus
KS 0460.

Conclusions
Twenty years have passed since the extremely IR-resistant
bacterium D. radiodurans became one of the first free-
living organisms to be subjected to whole genome sequen-
cing [45]. Since then, comparative analyses between D.
radiodurans and other high-quality draft and complete
Deinococcus genomes have continued, but with few novel
findings [10]. Deinococcus ficus KS 0460 hereby becomes
the eleventh Deinococcus reference genome. We confirm
by transmission electron microscopy that the very IR-
resistant strain KS 0460 grows as single bacillus-shaped
cells, whereas deinococci typically grow as diplococci and
tetracocci. Our 16S rRNA phylogenetic analysis confirms
that strain KS 0460 belongs to the genus Deinococcus, its
ribosomal RNA being almost identical to the type strain
of D. ficus DSM 19119. The D. ficus KS 0460 genome
(4.019 Mbp) is 28% larger than D. radiodurans BAA-
816 and is divided into six genome partitions compared
to four partitions in D. radiodurans. Of the 875 genes
representing the core genome of ten Deinococcus species,
only five genes are missing from D. ficus KS 0460. In other
words, D. ficus KS 0460 exemplifies the Deinococcus
lineage. In particular, D. ficus KS 0460 contains the same
DNA replication and repair genes, and antioxidant genes
(e.g. Mn-dependent superoxide dismutase and catalase) as
D. radiodurans, which were previously shown to be unre-
markable [10]. The most striking genomic differences
between D. ficus KS 0460 and D. radiodurans BAA-816
are metabolic: (i) D. ficus lacks nine genes involved in
purine degradation present in D. radiodurans, possibly
contributing to the accumulation of small metabolites
known to be involved in the production of Mn2+ antioxi-
dants, which specifically protect proteins from IR-induced
ROS; and (ii) D. ficus contains eight genes in nitrogen
metabolism that are absent from D. radiodurans, includ-
ing nitrate and nitrite reductases, suggesting that D. ficus
has the ability to reduce nitrate, which could facilitate sur-
vival in anaerobic/microaerophilic environments. We also
show that D. ficus KS 0460 accumulates high Mn concen-
trations and has a significantly higher antioxidant capacity
than IR-sensitive bacteria. However, D. ficus KS 0460 lacks
the homologue of the D. radiodurans nramp Mn-
transporter, previously identified as critical to extreme IR
resistance [40, 41], but D. ficus KS 0460 encodes at least

one alternative manganese transport system. Thus, like
previous Deinococcus genome comparisons, our D. ficus
analysis demonstrates the limited ability of genomics to
predict complex phenotypes, with the pool of genes
consistently present in radioresistant, but absent from
radiosensitive species of the phylum shrinking further
[3, 10]. With D. ficus KS 0460, the number of com-
pleted Deinococcus genomes is now sufficiently large to
determine the core genome and pangenome of these
remarkable bacteria. We anticipate that these fresh gen-
omic insights will facilitate approaches applying Deino-
coccus Mn antioxidants in the production of irradiated
vaccines [46, 47] and as in vivo radioprotectors [48].

Additional files

Additional file 1: Figure S1. 16S rRNA phylogenetic tree of the
Deinococcus genus. The multiple alignment of 16S rRNA sequences
was constructed using MUSCLE program [58] with default parameters.
The maximum-likelihood phylogenetic tree was reconstructed using the
PHYML program [18], with GTR substitution matrix, empirical base frequencies,
and gamma-distributed site rates; support values were computed using the
aBayes method. Truepera radiovictrix was chosen as an outgroup. D. ficus KS
0460 is marked in red, D. ficus DSM 19119 in green, completely sequenced
genomes (according to GenBank) in purple. (PDF 416 kb)

Additional file 2: Table S1. DNA repair genes that are present in D.
ficus KS 0460 and in D. radiodurans BAA-816. (XLSX 13 kb)

Additional file 3: Table S2. Genes that are present in D. ficus KS 0460
but absent in D. radiodurans BAA-816. (XLSX 44 kb)
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