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Abstract

Dethiobacter alkaliphilus strain AHT1T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph
isolated from hypersaline soda lake sediments in northeastern Mongolia. It is a Gram-positive bacterium with low GC
content, within the phylum Firmicutes. Here we report its draft genome sequence, which consists of 34 contigs with a
total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1T was sequenced by the Joint Genome Institute (JGI) as
part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.
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Introduction
Soda lakes are formed in environments where high rates
of evaporation lead to the accumulation of soluble carbon-
ate salts due to the lack of dissolved divalent cations. Con-
sequently, soda lakes are defined by their high salinity and
stable highly alkaline pH conditions, making them dually
extreme environments. Soda lakes occur throughout the
American, European, African, Asian and Australian conti-
nents and host a wide variety of Archaea and Bacteria,
specialized at surviving under such high salt and high pH
conditions [1]. These haloalkaliphiles drive a number of
biogeochemical cycles essential to their survival, most not-
ably; the sulfur cycle is very active in these unique habitats
[2–4]. The most noteworthy taxa associated with the
reductive sulfur cycle are the Deltaproteobacteria and the
Firmicutes. Recently, a number of Gram-positive Fir-
micutes genomes have been analyzed and published de-
scribing their metabolic potential and environmental
adaptations, including the polyextremophile Natranaero-
bius thermophilus [5], and species belonging to the Desul-
fotomaculum spp. [6–8] and the Desulfosporosinus spp.
[9]. Here we give an extended insight into the first known
* Correspondence: g.muijzer@uva.nl
1Department of Freshwater and Marine Ecology, Microbial Systems Ecology,
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam,
Amsterdam, The Netherlands
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
genome of a haloalkaliphilic Gram-positive sulfur dispro-
portionator within the phylum Firmicutes: Dethiobacter
alkaliphilus AHT1T.

Organism information
Classification and features
The haloalkaliphilic anaerobe D. alkaliphilus AHT1T

was isolated from hypersaline soda lake sediments in
northeastern Mongolia [10]. D. alkaliphilus AHT1T cells
are Gram-positive and the motile rod-shaped cells form
terminal ellipsoid endospores (Fig. 1). The strain toler-
ates salt concentrations ranging from 0.2–0.8 M Na+

with an optimum at 0.4 M and is an obligate alkaliphile,
growing within a pH range from 8.5–10.3 with an
optimum at 9.5 [10]. Phylogenetic analysis showed that
strain AHT1T is a member of the phylum Firmicutes
and the order Clostridiales (Fig. 2). Its closest relative is
an acetate-oxidizing syntrophic alkaliphile, described as
“Candidatus Contubernalis alkalaceticum” which was
isolated from a soda lake [11] (Fig. 2). The 16S riboso-
mal RNA of D. alkaliphilus AHT1T (EF422412) is 88%
identical to the 16S rRNA of “Candidatus Contubernalis
alkalaceticum” (DQ124682) [12].

Extended feature descriptions
D. alkaliphilus AHT1T is an obligate anaerobe that can
produce sulfide by using elemental sulfur and polysulfides
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Fig. 1 Morphology of D. alkaliphilus AHT1T. a Phase contrast micrograph
of cells. b Electron microscope image of a D. alkaliphilus AHT1T cell
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as electron acceptor [10]. Additionally, it has been shown
to incompletely reduce thiosulfate to sulfide and sulfite
with hydrogen or formate as electron donor [10]. Strain
AHT1T is the first representative from the Firmicutes with
the metabolic capacity to grow by elemental sulfur dispro-
portionation [13] and, therefore, is a very interesting
organism to compare to the typical sulfur disproportiona-
tors from the Deltaproteobacteria. This species may play
an important role in the reductive sulfur cycle in soda lake
environments [2] and possibly also in other alkaline anaer-
obic habitats, such as serpentinization “cement springs”,
where sequences closely related to Dethiobacter have been
found [14, 15]. Also, its affiliation with the syntrophic
Clostridia “Candidatus Contubernalis alkalaceticum”
(Fig. 2) implies that D. alkaliphilus AHT1T could be
involved in syntrophic anaerobic metabolic activity.
More classifications and features of this species are
listed in Table 1.
Genome sequencing information
Genome project history
This organism was selected for sequencing at the JGI
(http://jgi.doe.gov) based on its potential for bioremedi-
ation and biotechnological applications. It is part of the
Community Science Program: Haloalkaliphilic sulfate-,
thiosulfate- and sulfur-reducing bacteria (CSP_788492).
The project is registered in the Genomes OnLine
Database (Ga0028528) [16] and the permanent draft
genome sequence is deposited in GenBank (RefSeq:
NZ_ACJM00000000.1). Draft sequencing and assem-
bly were performed at the JGI using state of the art
sequencing technology [17]. The project information
is summarized in Table 2.

Growth conditions and genomic DNA preparation
Strain AHT1T was grown anaerobically at 30 °C in Na-
carbonate buffered mineral medium (22 g/L Na2CO3,
8 g/L NaHCO3, 6 g/L NaCl, 1 g/L K2HPO4) with a pH
of 10 and 0.6 M total Na+. Additionally, 4 mM NH4Cl,
1 mM MgCl2 x 6H2O and 1 mlL−1 trace element solu-
tion were added [18]. After sterilization, acetate serving
as carbon source (2 mM) and thiosulfate (20 mM) the
electron-acceptor, were also added to the medium. The
culture (2 L) was grown in a 10 L bottle mounted on a
magnetic stirrer whereby the headspace (8 L) was re-
placed by 100% (v/v) H2, at 0.5 Bar overpressure, acting
as the electron-donor. Half the culture volume (1 L) was
centrifuged at 13,000 g for 30 min, the pellet was washed
with 1 M NaCl and frozen at -80 °C until further down-
stream processing. DNA was extracted from the pellet
by the phenol-chloroform method after pre-treatment
with SDS-proteinase K according to Marmur [19]. The
concentration and molecular weight of the DNA were
checked by UV spectroscopy and gel electrophoresis,
respectively.

Genome sequencing and assembly
The size of the assembled D. alkaliphilus AHT1T gen-
ome sequence was 3.12 Mbp. The draft genome was
generated at the JGI using a combination of Sanger,
Solexa/Illumina [20] and 454 DNA sequencing technolo-
gies [21]. An 8 Kb Sanger library was constructed that
provided 2.5 x coverage of the genome (15,321 reads
generated) and a Solexa shotgun library and a 454 Titan-
ium standard library, which provided 25× genome cover-
age totalling 110.0 Mbp of 454 data. The 454 Titanium
data were assembled with Newbler. The Newbler con-
sensus sequences were computationally shredded into 2
Kb overlapping fake reads (shreds). Illumina sequencing
data was assembled with VELVET, version 1.0.13 [22],
and the consensus sequences were computationally
shredded into 1.5 Kb overlapping fake reads (shreds).
We then integrated Sanger reads, the 454 Newbler
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Table 1 Classification and general features of D. alkaliphilus AHT1T

MIGS ID Property Term Evidence code

Classification Domain: Bacteria
Phylum: Firmicutes
Class: Clostridia
Order: Clostridiales
Family: Syntrophomonadaceae
Genus: Dethiobacter
Species: Dethiobacter alkaliphilus
Type strain: AHT1T

TAS [51]
TAS [52–54]
TAS [55, 56]
TAS [57, 58]
TAS [59]
TAS [10, 60]
TAS [10, 60]
TAS [10]

Gram stain positive TAS [10]

Cell shape rod-shaped TAS [10]

Motility motile TAS [10]

Sporulation endospore-forming TAS [10]

Temperature range mesophile TAS [10]

Optimum temperature 33

pH range; Optimum 8.5-10.3; 9.5 TAS [10]

Carbon source CO2, acetate TAS [10]

MIGS-6 Habitat hypersaline soda lakes, sediments

MIGS-6.3 Salinity moderately salt-tolerant

MIGS-22 Oxygen requirement anaerobe

MIGS-15 Biotic relationship free-living

MIGS-14 Pathogenicity none

MIGS-4 Geographic location northeastern Mongolia; lakes Hotontyn and Shar-Burdiin TAS [2]

MIGS-5 Sample collection September 1999

MIGS-4.1 Latitude 48° 19′ 40″ TAS [2]

MIGS-4.2 Longitude 114° 30′ 16″ TAS [2]

MIGS-4.4 Altitude 1000 m

Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature); NAS Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [Cite ontology project]

Fig. 2 Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic position of D. alkaliphilus AHT1T to other species
within the phylum Firmicutes. The Deltaproteobacteria were used as an outgroup, but were pruned from the tree. The dots indicate bootstrap
values between 80 and 100%. The scale bar indicates a 2% sequence difference. The tree was constructed with the ARB software package [48]
and the SILVA database [29]. The bootstrap values were calculated using MEGA-6 [49]
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Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality permanent draft

MIGS 28 Libraries used Solexa

MIGS 29 Sequencing platforms 454

MIGS 31.2 Fold coverage 33.2

MIGS 30 Assemblers Newbler, (2.0.00.20-PostRelease-
11-05-2008-gcc-3.4.6), PGA [23],
VELVET [22]

MIGS 32 Gene calling method Prodigal [28]

Locus Tag DealDRAFT

Genbank ID ACJM00000000

Genbank Date of Release 12.12.2013

GOLD ID Gp0001962

BIOPROJECT PRJNA30985

Project relevance bioremediation, environmental
biotechnology

Table 3 Nucleotide content and gene count levels of the
genome

Attribute Value % of total

Genome size (bp) 3,116,746 100

DNA coding (bp) 2,773,015 88.97

DNA G + C (bp) 1,510,353 48.46

DNA scaffolds 34 100

Total genes 3213 100

Protein coding genes 3163 98.44

RNA genes 50 1.56

Pseudo genes 0 0

Genes in internal clusters 177 not reported

Genes with function prediction 2223 69.19

Genes assigned to COGs 1971 61.34

Genes with Pfam domains 2632 81.92

Genes with signal peptides 170 5.29

Genes with trans-membrane helices 962 29.94

CRISPR repeats 0 0
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consensus shreds and the Illumina VELVET consensus
shreds using the PGA assembler [23], to combine se-
quence data from all three platforms for a most contigu-
ous assembly. The software Consed [24] was used in the
computational finishing process as described previously
[25]. The final draft assembly contained 34 contigs in 5
scaffolds.
Genome annotation
The assembled sequence was automatically annotated
with the JGI prokaryotic annotation pipeline [26] with
additional manual review using the IMG-ER platform
[27]. Genes were predicted using Prodigal [28], riboso-
mal RNAs were detected using models built from SILVA
[29] and tRNAs were predicted with tRNAScanSE [30].
The predicted CDs were translated and used to search
the NCBI non-redundant database UniProt, TIGRFam,
Pfam, KEGG, COG and InterPro databases. The final an-
notated genome is available from the IMG system [31].
We performed a CheckM analysis [32] and assessed that
the genome is 95.8% complete.
Genome properties
The genome is 3,116,746 bp long with a GC content of
48.46%. A total of 3213 genes were found, of which 3163
coded for proteins and 50 genes encoded only RNA.
From the total genes, 69.19% was assigned a putative
function. The IMG taxon ID is 643,886,183. The differ-
ent functional gene groups are summarized in Table 3.
Furthermore, the number of genes assigned to functional
COG categories is displayed in Table 4.
Insights from the genome sequence
Extended insights: Metabolic potential
Hydrogen metabolism requires a number of hydrogenase
operons, including the hyd operon, and a Ni-Fe metallo-
center assembly (hyp) [33]. The first part of the hydro-
genase hyd operon is the small hydrogenase subunit
hydA located at DealDRAFT_1217, the closest NCBI
BLAST hit [12] of this protein is the hydA gene in
Desulfotomaculum gibsoniae (Desgi_1397) with 70.4%
similarity in a pair-wise alignment [34]. Directly adjacent
to hydA, is the large subunit hydB (DealDRAFT_1218)
in the D. alkaliphilus AHT1T genome. This subunit is
most similar (75.9%) to the hydB subunit in Dehalobac-
ter sp. UNSWDHB (UNSWDHB_1527) [12, 34]. Deal-
DRAFT_1219 is a cytochrome B561 of 198 amino acids
and could therefore be the interacting partner and
gamma subunit hydC in the hyd operon. The 6-gene hyp
operon hypABCDEF is responsible for the assemblage of
the Ni-Fe uptake hydrogenases [35]. The last 5 proteins
of the hyp operon are annotated in the D. alkaliphilus
AHT1T genome (DealDRAFT_0838-DealDRAFT_0842)
and follow the organization hypBFCDE, as has been seen
before in Rhizobium [36]. The first gene in the operon
(DealDRAFT_0843) is a hypothetical protein of 88 nu-
cleotides length and is assigned to pfam01155 hypA,
which is 42.6% identical to the hypA gene in Moorella
thermoaceticum. Therefore, this hypothetical protein is
most likely hypA in D. alkaliphilus AHT1T. Using
hydrogen as electron donor, D. alkaliphilus AHT1T can
grow autotrophically by fixing inorganic carbon through
the Wood Ljungdahl pathway, the key genes are all
present in the genome (Fig. 3a), including the acs gene

http://plants.usda.gov/core/profile?symbol=UGNI
http://dx.doi.org/10.1601/nm.4338
http://dx.doi.org/10.1601/nm.13712
http://dx.doi.org/10.1601/nm.4315
http://dx.doi.org/10.1601/nm.4315
http://dx.doi.org/10.1601/nm.13712
http://dx.doi.org/10.1601/nm.1279
http://dx.doi.org/10.1601/nm.4533
http://dx.doi.org/10.1601/nm.13712
http://dx.doi.org/10.1601/nm.13712
https://www.ncbi.nlm.nih.gov/nuccore/ACJM00000000
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA30985


Table 4 Number of genes associated with general COG
functional categories

Code Value % of total Description

J 175 7.89 Translation, ribosomal structure
and biogenesis

A not
reported

not
reported

RNA processing and modification

K 134 6.04 Transcription

L 83 3.74 Replication, recombination and repair

B 1 0.05 Chromatin structure and dynamics

D 45 2.03 Cell cycle control, cell division,
chromosome partitioning

V 58 2.62 Defense mechanisms

T 131 5.91 Signal transduction mechanisms

M 124 5.59 Cell wall/membrane biogenesis

N 52 2.35 Cell motility

U 34 1.53 Intracellular trafficking and secretion

O 90 4.06 Posttranslational modification, protein
turnover, chaperones

C 178 8.03 Energy production and conversion

G 81 3.65 Carbohydrate transport and metabolism

E 227 10.24 Amino acid transport and metabolism

F 69 3.11 Nucleotide transport and metabolism

H 149 6.72 Coenzyme transport and metabolism

I 80 3.61 Lipid transport and metabolism

P 133 6.00 Inorganic ion transport and metabolism

Q 24 1.08 Secondary metabolites biosynthesis,
transport and catabolism

R 183 8.25 General function prediction only

S 129 5.82 Function unknown

– 1242 38.66 Not in COGs

The total is based on the number of protein coding genes in the genome

Fig. 3 a KEGG orthologs annotated in the gene pathway encoding
Wood Ljungdahl inorganic carbon fixation in D. alkaliphilus strain
AHT1T. b The acs gene cluster with locus tags. All locus tag numbers
are indicated and preceded by DealDRAFT_
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cluster (Fig. 3b). Heterotrophic growth by D. alkaliphilus
AHT1T can be achieved with glucose and fructose [10],
the entire glycolysis pathway is present in the genome
(Fig. 4). Carbohydrate metabolism in D. alkaliphilus
AHT1T also includes oxidation of short chain organic
acids; the tetrameric pyruvate oxidoreductase is present
in the conformation porBADC (DealDRAFT_1244 –
DealDRAFT_1247). Lactate dehydrogenases could not
be found, although there is an L-lactate permease (Deal-
DRAFT_0239), an L-lactate transport protein (Deal-
DRAFT_1845) and a large and small subunit
acetolactate synthase (DealDRAFT_2169 and 2170). For
assimilation of acetate, strain AHT1T has an acetyl coen-
zyme A synthetase (DealDRAFT_1887).
D. alkaliphilus AHT1T might play a role in the reduc-

tive sulfur cycle in alkaline habitats since it grows as a
thiosulfate and sulfur/polysulfide reducer or by sulfur
disproportionation in laboratory cultures [10]. The
genome sequence contains a thiosulfate sulfurtransferase
(DealDRAFT_1917), which is located directly adjacent to
another sulfur transferase (Rhodanese domain Deal-
DRAFT_1918). Both alpha and beta subunits of the ade-
nylylsulfate reductase apr operon were also found
(DealDRAFT_1379, DealDRAFT_1380). The qmo elec-
tron transfer complex, which usually accompanies the

http://dx.doi.org/10.1601/nm.13712
http://dx.doi.org/10.1601/nm.13712
http://dx.doi.org/10.1601/nm.13712


Fig. 4 KEGG orthologs annotated in the Embden-Meyerhof pathway
of organic carbon assimilation in D. alkaliphilus strain AHT1T. The
numbers of the locus tags of the genes catalyzing each reaction are
indicated and must be preceded by DealDRAFT_

Fig. 5 a The ntp Vacuole-type ATP synthase operon structure. b 93
ntpD homologs (DealDRAFT_1677) within the genus Clostridia were
aligned in Clustal Omega [34] and an unrooted neighbour-joining
tree was generated in MEGA-6 [49]. From this tree, we picked the
branch that contained the D. alkaliphilus AHT1T ntpD sequence and
computed a new neighbourjoining tree with gene DCR20291_1119
as an outgroup. The scale bar indicates a 0.5% sequence difference
and conserved gene neighbourhoods of those genes were investigated
using MGcV [50]. Large dots at the tree nodes indicate a bootstrap value
of >85 (1000 replicates)
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apr operon [37], is not found. Key sulfur reduction genes
such as sat (sulfate reduction), dsr (sulfite reduction) and
psr (sulfur reduction) were also not found in this draft
genome. As D. alkaliphilus AHT1T can reduce and dis-
proportionate elemental sulfur/polysulfide in laboratory
cultures [10, 13], the absence of these genes is surpris-
ing. It is conceivable however, that the sequencing qual-
ity of the permanent draft is insufficient to recover
complete pathways. Indeed, CheckM analysis revealed
that the genome was only 95.8% complete. Unfortu-
nately, we can therefore not explain the key dissimila-
tory disproportionation mechanism from this genomic
data. The genome also contains some assimilatory sul-
fate reduction genes, such as cysND (DealDRAFT_1193
and DealDRAFT_1192).

Extended insights: Haloalkaliphilic adaptations
In order to generate ATP, D. alkaliphilus AHT1T has an
ntp gene operon encoding a vacuolar ATP synthase
(V0V1-type) (DealDRAFT_1677 – DealDRAFT_1685)
(Fig. 5a). This operon structure is conserved among the
Clostridia (Fig. 5b). The ntp operon encodes the ATP
synthase for ATP generation and follows the GILEX-
FABD organization in the Deinococcus-Thermus phylum
[38]. In the Firmicutes, the gene organization is slightly
different at GIKECFABD (Fig. 5a, b). In D. alkaliphilus
AHT1T these genes are located from DealDRAFT_1685
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(ntpG) to DealDRAFT_1677 (ntpD). The ntpD subunit
within the operon is annotated as being of the V-type. In
order to confirm that the ATP synthase is indeed V-type
[39], we constructed a phylogenetic tree of the trans-
membrane c/K subunits of Firmicutes known specifically
to be V- or F-type [40] and NCBI annotation] and
aligned the D. alkaliphilus AHT1T ntpC sequence (Deal-
DRAFT_1683) with these other sequences (Fig. 6a) [41].
As seen before, there was a clear separation between V-
type and F-type ATP synthase, where the AHT1T se-
quence clustered together with the V-type ATP synthase.
In addition, the sequences are tentatively clustered into
separate H+ or Na+ coupled ATPase branches. The
AHT1T sequence was positioned within a Na+ coupled
V-type ATP synthase group, indicating that this organ-
ism’s ATP synthase is coupled specifically to Na+ trans-
location across the membrane. In order to explore this
further, we looked at specific Na+ binding residues and
ligands on the transmembrane c/K subunit [40], and
Fig. 6 a Phylogeny of the F- vs. V-type ATPase within the Firmicutes. Numb
bar indicates 0.2% sequence difference. b Weblogo of conserved regio
D. alkaliphilus AHT1T subunit ntpC (DealDRAFT_1683) where conserved
created a Weblogo for the Na+ specific Firmicutes V-
type ATP synthase (Fig. 6b) [42, 43]. When we aligned
the ntpC sequence of D. alkaliphilus AHT1T we found
that it contains all the conserved five amino acids
(Ser26, Leu57, Thr60, Gln61 and Tyr64) specific for Na+

translocation [40] (Fig. 6c). Thus, the D. alkaliphilus
AHT1T genome contains a Na+ coupled V-type ATP
synthase.
In order to import protons to retain the intracellular

pH, the genome contains the multi-subunit electrogenic
sodium/proton antiporter mrp (DealDRAFT_2487–
2497), that pumps protons into the cell and sodium out
of the cell [44]. To retain osmotic balance, D. alkaliphi-
lus AHT1T has numerous substrate binding regions and
transporters for glycine betaine (e.g. DealDRAFT_2378,
_2380 and DealDRAFT2842, _2844), leading to the con-
clusion that osmoprotectants are used to maintain cellu-
lar turgor pressure, instead of the salt-in strategy.
Another necessity for alkaliphilic bacteria is to prevent
ers on the tree nodes indicate bootstrap values (1000 replicates). Scale
n within the ntpC/K Firmicu subunit [42, 43]. c Weblogo of aligned
Na+ binding regions (in B and C) are indicated with black arrows
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proton leakage from cells, which they can achieve through
structural membrane adaptations [1]. The genome con-
tains the genes to synthesize the squalene precursors
dimethylallyl diphosphate and isopentenylallyl diphos-
phate through the non-mevalonate pathway [45]. The ac-
companying locus tags within the KEGG non-mavalonate
pathway (M00096) are dxs (DealDRAFT_0731), dxr/ispC
(DealDRAFT_2409), ispD (DealDRAFT_2331), ispE (Deal-
DRAFT_2584), ispF (DealDRAFT_2332), ispG (Deal-
DRAFT_2411) and ispH (DealDRAFT_0659). However,
we did not find genes similar to hpnCDE, which function
in the formation of squalene from its precursors [46].
Thus, D. alkaliphilus AHT1T does not seem to have this
membrane adaptation to haloalkaline environments, al-
though it could also be due to the incompleteness of the
genome. Nevertheless, it has been shown that Bacillus len-
tus C-125, also a Firmicute, survives in the haloalkaline
environment by increased levels of acidic polymers in its
cellular membrane resulting in a cell wall negative charge
[47]. It is possible that D. alkaliphilus AHT1T supports a
similar mechanism to survive the alkaline pH values of its
environment.
Conclusions
In this manuscript we globally characterize the genome
of D. alkaliphilus AHT1T, which was isolated from hy-
persaline soda lakes sediment in north-eastern Mongolia.
Investigation of the genome of this anaerobic sulfidogen
identified genes for the Wood Ljungdahl pathway (auto-
trophic growth, Fig. 3) and the Embden-Meyerhof path-
way (heterotrophic growth Fig. 4). Thus the carbon
metabolism of this microbe is fairly versatile. D. alkali-
philus AHT1T is capable of disproportionation in labora-
tory cultures, thus future genomic analyses with qPCR
may provide insights into the disproportionation of sul-
fur compounds. D. alkaliphilus AHT1T is well adapted
to the haloalkaline environment, we found genes for
active energy generation with a sodium V-type ATP syn-
thase (Fig. 6). In addition, transporters for the osmopro-
tectants glycine and betaine were found to maintain
cellular homeostasis and protection from the saline ex-
ternal environment. Further research will extend our
knowledge on the ecophysiology of haloalkaliphiles, their
role in nutrient cycling in extreme environments and
their adaptations to this polyextreme environment.
Moreover, insight in the genome sequence and subse-
quent transcriptomic or proteomic analysis will be help-
ful to infer the potential role of D. alkaliphilus AHT1T

in the biotechnological removal of sulfur compounds
from wastewater and gas streams.
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