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Abstract
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Aquidulcibacter paucihalophilus TH1-2" is a member of the family Caulobacteraceae within Alphaproteobacteria
isolated from cyanobacterial aggregates in a eutrophic lake. The draft genome comprises 3,711,627 bp and 3489
predicted protein-coding genes. The genome of strain TH1-2" has 270 genes encoding peptidases. And metallo
and serine peptidases were found most frequently. A high number of genes encoding carbohydrate active enzymes
(141 CAZymes) also present in strain TH1-2" genome. Among CAZymes, 47 glycoside hydrolase families, 37 glycosyl
transferase families, 38 carbohydrate esterases families, nine auxiliary activities families, seven carbohydrate-binding
modules families, and three polysaccharide lyases families were identified. Accordingly, strain TH1-2" has a high
number of transporters (91), the dominated ones are ATP-binding cassette transporters (61) and TonB-
dependent transporters (28). Major TBDTs are Group |, which consisted of transporters for various types of dissolved
organic matter. These genome features indicate adaption to cyanobacterial aggregates microenvironments.
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Introduction

Lake Taihu is the third largest freshwater lake in China,
located in the rapidly-developing, economically-important
Changjiang (Yangtze) River Delta. Microcystis spp. often
form large mucilaginous blooms in the lake due to
anthropogenic nutrient over-enrichment. These bloom
aggregates were composed of extracellular polymeric sub-
stances, produced via a number of approaches including
excretion, secretion, sorption and cell lysis, comprising a
heterogeneous polymer and mainly consisted of polysac-
charides, proteins, lipids and humic substances [1]. Within
the bloom, a variety of niches are created within a dense
scum that can be 10-30 cm in thickness [2]. The diel
shifts lead to changes in the dissolved oxygen levels with
oxygen enrichment during the day and depleted at night,
and with microaerobic zones present at all times within
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the Microcystis spp. blooms [3]. It is known that many het-
erotrophic bacteria live in association with cyanobacteria
[4, 5]. To maintain the dominance of the cyanobacterial
bloom, bacterial taxa within the cyanobacterial aggregates
possibly catalyze the turnover of complex organic matters
released by cyanobacteria, to recycle the previously-loaded
nutrient sources [5].

Aquidulcibacter paucihalophilus type strain TH1-2"
(=CGMCC 1.12979" = LMG 28362") is a member of
the family Caulobacteraceae within Alphaproteobacteria
isolated from cyanobacterial aggregates in lake Taihu,
China [6]. The genus Aquidulcibacter currently includes
only one cultivated strain. The sequenced genome of A.
paucihalophilus TH1-2" will provide the genetic basis
for better understanding of adaptation to cyanobacterial
aggregates and ecological function during the cyanobac-
terial bloom.

Here, we present the genome of A. paucihalophilus
TH1-2" with special emphasis on the genes coding for
carbohydrate active enzymes and peptidases. The second
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focus is on genes coding for dedicated transport systems
for the uptake of macromolecule decomposition prod-
ucts which released by cyanobacteria Microcystis spp.,
such as ATP-binding cassette transporters and TonB-
dependent transporter system.

Organism information

Classification and features

Cyanobacterial bloom samples were taken from Lake
Taihu. Samples were transferred to 500 mL beakers and
left at room temperature for 2 h. This resulted in
flotation of the cyanobacterial aggregates to the top of
the beaker. Several of the largest aggregates were
selected for testing and washed three times in sterile lake
water. A. paucihalophilus strain TH1-2" was isolated
from cyanobacterial aggregates [6]. The 16S rRNA gene
sequence similarities between strain TH1-2" and others
were <91%. The position of strain TH1-2" relative to its
phylogenetic neighbors is shown in Fig. 1. Strain TH1-
2" formed a deeply separated branch, with the genera
Asticcacaulis, Brevundimonas, Caulobacter and Phenylo-
bacterium, which belong to the family Caulobacteraceae,
and separate from the cluster with genera of the family
Hyphomonadaceae (Fig. 1).
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Cells of strain TH1-2" are rod-shaped, with a length
of 1.8-2.2 pm and a width of 0.8-1.1 um (Fig. 2 and
Table 1). Cells are motile by means of a single polar
flagellum. TH1-2" is a Gram-negative, aerobic, meso-
philic bacterium with an optimal growth temperature is
30 °C and an optimal salinity is 0%. On R2A agar
(Oxoid) strain TH1-2T forms smooth, yellow colonies
after 24 h at 30 °C. Strain TH1-2" is able to utilize
N-acetyl-glucosamine, citrate, gluconate, D-glucose,
D-mannitol, D-maltose, phenyl acetate, L-rhamnose, and
starch [6]. Strain TH1-2" possesses alkaline phosphatase,
esterase (C4), esterase lipase (C8), leucine arylamidase, val-
ine arylamidase, cystine arylamidase, trypsin a-chymotryp-
sin, acid phosphatase, naphthol-AS-BI-phosphohydrolase,
B-galactosidase, o - and P -glucosidase, and N-acetyl-f3-
glucosaminidase [6].

Chemotaxonomic data

The predominant cellular fatty acids in strain TH1-2" are
Ci60 Ci61 05¢, summed feature 3 (comprising Ci6,1 w6¢
and/or Ci6; ®7c¢) and summed feature 8 (consisting Cjg,q
w6c and/or Cig; w7c). The predominant polar lipids are
diphosphatidylglycerol, phosphatidylethanolamine and
phosphatidylglycerol. The DNA G+ C content was re-
ported to be 55.6 mol% [6].
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Hirschia maritima GSM-2T (FM202386)
Ponticaulis koreensis GSM-23T (FM202497)
Hyphomonas adhaerens MHS-3" (AF082790)
Maribaculum marinum P38T (EU819081)

avaovpvuowoydqAgy

(AI278187)

1-2" relative to the representatives of the order Caulobacterales including the



http://dx.doi.org/10.1601/nm.648
http://dx.doi.org/10.1601/nm.30931
http://dx.doi.org/10.1601/nm.1263
http://dx.doi.org/10.1601/nm.1266
http://dx.doi.org/10.1601/nm.1250
http://dx.doi.org/10.1601/nm.1275
http://dx.doi.org/10.1601/nm.1275
http://dx.doi.org/10.1601/nm.1249
http://dx.doi.org/10.1601/nm.14022

Cai and Zeng Standards in Genomic Sciences (2017) 12:69

; R Y6k 2
’—m ‘nuizwz LESEES |
JEM-1400| 80 kV 120000 x [ 1 pm— |

Fig. 2 Images of A. paucihalophilus TH1-2" using transmission

electron micrograph

Genome sequencing information

Genome project history

A. paucihalophilus strain TH1-2" was selected for
sequencing in 2017 based on its phylogenetic position
and its isolation environment [6]. The quality draft
assembly and annotation were made available for public
access on Apr 24, 2017. The genome project is deposited
in the Genomes OnLine Database as project Gp0225845.
This Whole Genome Shotgun project has been depos-
ited at GenBank under the accession NCSQ00000000.1.
The NCBI accession number for the Bioproject is
PRJNA382246. Table 2 presents the project information
and its association with MIGS version 2.0 compliance [7].

Growth conditions and genomic DNA preparation

A. paucihalophilus strain TH1-2" was grown in R2A agar
medium at 30 °C, as previously described [6]. Genomic
DNA was isolated from 0.5 g of cell paste using Gentra
Puregene Yeast/Bact. Kit (Qiagen) as recommended by the
manufacturer.

Genome sequencing and assembly

Whole-genome sequencing was performed using the
[lumina technology. Preparation of paired-end sequen-
cing library with the Illumina Nextera XT library prepar-
ation kit and sequencing of the library using the
[lumina HiSeq PE150 were performed as described by
the manufacturer (Illumina, San Diego, CA, USA). A
total of 17,033,314 paired-end reads totaling 5109.9 Mbp
remained after quality trimming and adapter removal with
Trimmomatic-0.33 [8]. The trimmed reads represented an
average genome coverage of ~1380-fold based on the size
of the assembled draft genome of strain TH1-2". De novo
assembly of all trimmed reads with SOAPdenovo v2.0 [9]
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resulted in 174 contigs. A summary of project information
is shown in Table 2.

Genome annotation

Protein-coding genes were identified as part of the
genome annotation pipeline the Integrated Microbial
Genomes Expert Review platform using Prodigal v2.50.
The predicted CDSs were translated and used to search
the National Center for Biotechnology Information non-
redundant database, UniProt, TIGR-Fam, Pfam, PRIAM,
KEGG, COG, and InterPro database. These data sources
were combined to assert a product description for each
predicted protein. Non-coding genes and miscellaneous
features were predicted using tRNAscan-SE [10],
RNAmmer [11], Rfam [12], TMHMM ([13] and SignalP
[14]. Additional gene prediction analyses and functional
annotation were performed within the IMG-Expert
Review platform [15].

Genome properties

The assembly of the draft genome sequence consists of
174 contigs amounting to 3,711,627 bp. The G+C
content is 55.7 mol% (Table 3). A total of 3544 genes
with 3489 protein-coding genes were predicted, whereas
2758 (77.82% of total genes) protein-encoding genes
were associated with predicted functions. Of the RNA,
42 are tRNAs and 3 are rRNAs. The genome statistics
are further provided in Table 3. The distribution of
genes into functional categories (clusters of orthologous
groups) is shown in Table 4.

Insights from the genome sequence
Energy metabolism
A. paucihalophilus TH1-2" has the complete Embden-
Meyerhof-Parnas pathway, pentose 5-phosphate pathway
and Entner-Doudoroff Pathway. For pyruvate oxidation
to acetyl-coenzyme A, THI1-2" contains a three-
component pyruvate dehydrogenase complex. TH1-2"
has a complete tricarboxylic acid cycle with the glyoxy-
late shunt and a redox chain for oxygen respiration,
including a sodium-transporting NAD(H): quinone
oxidoreductase (complex I), succinate dehydrogenase
(complex II), cytochrome c type (complex IV) terminal
oxidases, and a FOF1-type ATPase. The complex III
(cytochrome bcl) is absent. Under anoxic conditions,
TH1-2" has the potential for a mixed acid fermentation,
such as acetyl-coA fermentation to butyrate, as indicated
by presence of a 3-hydroxybutyryl-CoA dehydrogenase.
TH1-2" likely stores energy and phosphorus in the form
of polyphosphate, since the genome encodes an exopoly-
phosphatase and a polyphosphate kinase.

A. paucihalophilus TH1-2" is able to grow on organic
acid, amino acid, and various sugar [6]. Based on COG
functional categories (Table 4), The majority of genes of
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Table 1 Classification and general features of A. paucihalophilus strain TH1-2" according to the MIGS recommendations [7]

MIGS ID Property Term Evidence code®
Classification Domain Bacteria TAS [38]
Phylum Proteobacteria TAS [39]
Class Alphaproteobacteria TAS [40]
Order Caulobacterales TAS [41, 42]
Family Caulobacteraceae TAS [42, 43]
Genus Aquidulcibacter TAS [6]
Species Aquidulcibacter paucihalophilus TAS [6]
Type strain: TH1-2 TAS [6]
Gram stain negative TAS [6]
Cell shape rod (1.2-2.2 ym long, 0.8-1.1 um wide) TAS [6]
Motility motile TAS [6]
Sporulation none NAS
Temperature range mesophile TAS [6]
Optimum temperature 30 °C TAS [6]
pH range; Optimum 7 TAS [6]
Carbon source N-acetyl-glucosamine, citrate, gluconate, D-glucose, D-mannitol, D-maltose, phenyl acetate, TAS [6]
L-rhamnose, and starch
MIGS-6 Habitat Cyanobacterial aggregates in freshwater lake TAS [6]
MIGS-6.3 Salinity 0% NaCl (w/v) TAS [6]
MIGS-22 Oxygen requirement aerobe TAS [6]
MIGS-15 Biotic relationship Cyanobacterial aggregates associated TAS [6]
MIGS-14 Pathogenicity unknown NAS
MIGS-4 Geographic location Meiliang Bay, Lake Taihu, China TAS [6]
MIGS-5 Sample collection 2013 TAS [6]
MIGS-4.1 Latitude 31°30'N TAS [6]
MIGS-4.2 Longitude E 120°11°E TAS [€]
MIGS-4.3 Depth Lake surface TAS [6]
MIGS-4.4 Altitude not specified

®Evidence codes - TAS: Traceable Author Statement (i.e,, a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly
observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are

from the Gene Ontology project [44]

A. paucihalophilus associated with translation, ribosomal
structure and biogenesis, amino acid transport and
metabolism, lipid transport and metabolism, transcription,
cell wall/membrane/envelope biogenesis, coenzyme trans-
port and metabolism, energy production and conversion,
and carbohydrate transport and metabolism of which the
proportions were higher than 5%. The high number of
proteins in these classes indicated that A. paucihalophilus
TH1-2" possessed a delicate regulation system as well as
a requirement for sufficient organic in its lifestyle.
Comparison of different functional categories with other
model bacteria (Escherichia coli K12 [16], Pseudomonas
putida KT2440 [17], Shewanella oneidensis MR-1 [18]
revealed remarkable differences in the distribution of
functional categories of predicted proteins (Additional file 1:
Table S1). A. paucihalophilus TH1-2" had the highest
proportion of genes devoted to lipid metabolism, which

was even higher than that of P. putida KT2440 (4.01%), an
important  environmental  bacterium involved in
biodegradation. From the genes assigned to lipid metabol-
ism, 33 genes were related to fatty acid degradation based
on KEGG database. A. paucihalophilus TH1-2" also had
an increased proportion of coenzyme transport and metab-
olism, carbohydrate transport and metabolism, and protein
turnover. The distinctive percentage of genes for various
metabolisms indicated that A. paucihalophilus TH1-2"
had sophisticated systems to uptake and metabolize lipid,
carbohydrate, and protein. This provides clues to different
roles of A. paucihalophilus strain TH1-2" in cyanobacterial
aggregates environments.

Carbohydrate active enzymes
A. paucihalophilus TH1-2" was isolated from cyanobacter-
ial aggregates, hydrolyzes casein, starch and hemicellulose
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Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality High quality draft

MIGS-28 Libraries used Nextera XT

MIGS-29 Sequencing platforms lllumina HiSeq PE150

MIGS-31.2 Fold coverage 1380x

MIGS-30 Assemblers SOAPdenovo v. 2.01

MIGS-32 Gene calling method Prodigal v2.50, IMG-ER
Locus Tag B7364
Genome Database release IMG; 2,687,453,711
Genbank ID NCSQ00000000.1
Genbank Date of Release April 24th, 2017
GOLD ID Gp0225845
BIOPROJECT PRINA382246

MIGS-13 Source Material Identifier TH1-2

Project relevance environmental

[6]. Therefore, we compared the predicted CDS against
the CAZyme and dbCAN [19] database. The genome of
strain TH1-2" comprised a high number and high di-
versity of carbohydrate active enzymes including a total
of 47 glycoside hydrolases, 37 glycosyl transferases, 38
carbohydrate esterases, 9 auxiliary activities, 7
carbohydrate-binding modules, and 3 polysaccharide
lyases (Table 5).

The A. paucihalophilus TH1-2" genome encodes
CAZymes with expected properties such as peptidoglycan
synthesis and remodelling/degradation (belonging to
GT28 and GT51 families and GH3, GH23, GH24, GH102
and GH103 families respectively), and lipopolysaccharide

Table 3 Genome sequencing statistics of the A. paucihalophilus
TH1-2" genome

Attribute Value % of total
Genome Size (bp) 3,711,627 100
DNA coding (bp) 3,351,009 90.28
DNA G+ C (bp) 2,065,972 55.7
Total genes 3544 100
Protein-coding genes 3489 9845
RNA genes 55 1.55
Pseudo genes 0 0
Genes in internal clusters 621 17.52
Genes with function prediction 2758 77.82
Genes assigned to COGs 2379 67.13
Genes assigned to Pfam domains 2844 80.25
Genes with signal peptides 391 11.03
Genes with transmembrane helices 803 2266
CRISPR repeats 105
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Table 4 Number of genes associated with the general COG
functional categories

Code Value % age Description

J 189  7.12 Translation, ribosomal structure and biogenesis

A na. na RNA processing and modification

K 174 6,56  Transcription

L 109 411 Replication, recombination and repair

B 2 0.08  Chromatin structure and dynamics

D 30 113 Cell cycle control, cell division, chromosome
partitioning

\% 68 256  Defense mechanisms

T 112 422 Signal transduction mechanisms

M 165 622  Cell wall/membrane/envelope biogenesis

N 48 1.81 Cell motility

u 77 290  Intracellular trafficking, secretion, and vesicular
transport

0 132 497  Posttranslational modification, protein turnover,
chaperones

C 138 520  Energy production and conversion

G 135 509  Carbohydrate transport and metabolism

E 188 7.08  Amino acid transport and metabolism

F 66 249  Nucleotide transport and metabolism

H 146 550  Coenzyme transport and metabolism

| 180 6.78  Lipid transport and metabolism

p 130 490  Inorganic ion transport and metabolism

Q 104 392  Secondary metabolites biosynthesis, transport and

catabolism
R 235 885

S 177 667
- 1165 32.87

General function prediction only

Function unknown
Not in COGs

Abbreviation: n.a. not assigned
The total is based on the total number of protein coding genes in the genome

biosynthesis pathway (belonging to GT9, GT19, GT30,
GT83 families). Furthermore, A. paucihalophilus
TH1-2" has the potential to produce glucose from
glycogen by candidate a-amylases belonging to GH13
family (eight in total). In addition, there were also
other two cellulase classes for the complete degrad-
ation of hemicellulose by endo-1,4-f-mannosidase of
families GH5 (2 copies) and p-glucosidase of families
GH3 (4 copies).

Members of families CE1 and CE10, represented a
significant proportion (71%) of the total CEs, share the
common activities of carboxylesterase and endo-1,4-
B-xylanase [20]. However, they have a great diversity in
substrate specificity. For example, vast majority of CE10
enzymes act on non-carbohydrate substrates [21]. Out of
the 12 GT families identified in TH1-2" genome, enzymes
belonging to families GT2 and GT4 (cellulose synthase,
chitin synthase, a-glucosyltransferase, etc.) represented a
significant proportion (64%) of the total GTs.
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Table 5 CAZyme profile of A. paucihalophilus TH1-2"

CAZy family AA2 AA3 AA4 AA6 AA7 CBM4 CBM48
Counts 1 3 2 1 1 3
CAZy family CBM50 CE1 CE4 CE9 CE10 CET
Counts 1 12 5 2 15 1
CAZy family CE15 GH3 GH5 GH13 GH15 GH16 GH23
Counts 1 4 8 1 1 9
CAZy family GH24 GH36 GH42 GH43 GH53 GH63 GH68 GH77
Counts 1 1 1 1 1 1 1

CAZy family GH84 GH92 GH97 GH102 GH103 GH109 GH130 GH133
Counts 2 1 1 1 4 2 1

CAZy family GT2 GT4 GT19 GT26 G127 G128
Counts 14 10 1 1 1 1

CAZy family GT30 GT51 GT66 GT81 GT83 PL1 PL22
Counts 1 4 1 1 2 1

Lignin-degrading enzymes of which, CAZyme families
AA3 (glucose/methanol/choline oxidoreductases) and
AA7 (glucooligosaccharide oxidase) appeared to be
present in strain TH1-2" genome (Table 5). The family
AA3 enzymes provide hydrogen peroxide required by
the family AA2 enzymes (class II peroxidases) for cata-
lytic activity, whereas family AA7 enzymes are known to
be involved in the biotransformation or detoxification of
lignocellulosic biomass [22]. Generally, the families AA1
enzymes (multicopper oxidase) and AA2 enzymes
(class II peroxidase) are the main oxidative enzymes
that degrade phenolic and non-phenolic structures of
lignin.

Pectate lyases PL1 (2 copies) possessed in this strain
suggested that these enzymes could degrade pectin associ-
ated with cyanobacteria. CBMs which have no reported
enzymatic activity on their own, but can potentiate the
activities of all other CAZymes (GHs, CEs, and auxil-
iary enzymes) or act as an appendix module of
CAZymes [23, 24].

Peptidases

The MEROPS annotation was carried out by searching
the sequences against the MEROPS 12.0 database [25]
(access date: 2017.10.16, version: pepunit.lib) as described
in Hahnke et al. [26]. The genome of strain A. paucihalo-
philus TH1-2" comprised 270 identified peptidase genes
(or homologues), mostly serine peptidases (S, 133),
metallo peptidases (M, 56) and cysteine peptidases (C, 27)
(Table 6). Among serine peptidases, members of the fam-
ilies S09 and S33, both of which cleave mainly prolyl
bonds [27], are most prevalent in A. paucihalophilus
TH1-2". S09 members act mostly on oligopeptides, prob-
ably due to the confined space in the N-terminus of their
[-propeller tunnel [28, 29], and S33 members release an

N-terminal residue from a peptide, preferably (but not ex-
clusively) a proline [28]. So far, S9 and S33 peptidases have
been connected to the degradation of proline-rich proteins
from animals [30-32] and are not known for a role in the
biodegradation of algal biomass.

Among the present metalloproteinases, members of the
families M23 belong to the most frequent ones. M23
family members have been shown to take part in the

Table 6 Peptidases and simple peptidase inhibitors in the
genome of A. paucihalophilus TH1-2"

Peptidase  A08  A24 A28 coo C13 26 (39
Counts 1 1 1 1 1 13 1
Peptidase C40 C44 (56 (82 93 C9% MO1
Counts 1 5 1 2 1 1 3
Peptidase  M03  M13  M14  M15 M6 M17  MI19 M20
Counts 2 1 2 1 4 2 1 7
Peptidase  M23  M24 M28 M38 M41 M48 M50 M79
Counts 12 3 2 8 1 3 2 1
Peptidase ~ M96 NO6  NT1 PO1 S01
Counts 1 1 1 1 8
Peptidase  S06 S08 S09 S11 S12 S14 S16 S24
Counts 1 3 35 2 15 2 5 1
Peptidase  S26 S29  S33  S41 S45 546 S49  S54
Counts 5 1 36 2 3 1 12 1
Peptidase T01 T02 TO3  TO5 U32
Counts 1 2 4 1 3
Peptidase  U62  U73

Counts 2 2

Inhibitor 139 142 171 187

Counts 27 1 1 4
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extracellular degradation of bacterial peptidoglycan, either
as a defense or as a feeding mechanism [33]. The
complete extracellular decomposition of peptides to
amino acids requires M20 and M28 family exopeptidases
[27], both of which can be found abundantly in the A.
paucihalophilus TH1-2" genome as well.

Transport systems

Sixty-one ATP-binding cassette transporters, one
tripartite ATP-independent periplasmic transporters,
one phosphotransferase system transporters, 28 TonB-
dependent transporters were identified in TH1-2"
genome. ABC transporters are ubiquitous in bacteria
and function in the import of growth substrates or
factors, including carbohydrates, amino acids, poly-
peptides, vitamins, and metal-chelate complexes [34].
TBDT in the bacterial outer membrane often pro-
motes the transport of rare nutrients and is known
for its high-affinity uptake of iron complexes. Experi-
mental data reveal that carbohydrates, amino acid,
and organic acid are TonB-dependent substrates [35,
36]. Twenty-eight TBDTs detected in TH1-2"
genome were classified by aligning these genes with
genes within different clusters classified by Tang et
al,, [37]. Group I TBDTs, which was dominated in
TH1-2" genome, consisted of transporters for various
types of dissolved organic matter, including carbohy-
drates, amino acids, lipids, organic acid, and protein
degradation products (Table 7). Nine genes were iden-
tified as group III TBDTs, that transport iron from
heme or iron proteins with high affinity (Table 7).
Thirty-seven genes were related to porphyrin and
chlorophyll metabolism based on KEGG database.

Table 7 TBDTs in the genome of A. paucihalophilus TH1-2"

Function categories Cluster  Gene Substrates
number  number
Group I: DOM Cluster 5 Chito-oligosaccharides,
transporters 3090 phytate, maltodextrin,
maltose, chitin, xylan,
xylose, pectin
Cluster 4 Arabinose
427
Cluster 4 Sucrose
952
Group II: Siderophores/ Cluster 1 siderophore
Vitamins transporters 410
Cluster 3 Vitamin B12,
973 catecholates, enterobactin,
2,3-dihydroxybenzoylserine
(DHBS)
Group IIl: Heme/ Cluster 9 Heme
Hemophores/ Iron(heme)- 1586
binding transporters
Group IV: Metal Cluster 2 Copper, Copper chelate

transporters 767
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Conclusions

The genome of A. paucihalophilus TH1-2" contains a
relatively high number of genes coding for fatty acid
degradation, carbohydrate active enzymes and peptidase,
and transporter. The availability of A. paucihalophilus
TH1-2" draft genome sequence may provide better
insights into its primary metabolism and other pheno-
typic characteristics of interest. Further studies involving
characterization of carbon element cycling genes would
accentuate its biogeochemical cycling importance, par-
ticularly in ecological restoration for the eutrophic lake.
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