
EXTENDED GENOME REPORT Open Access

First genome sequencing and comparative
analyses of Corynebacterium
pseudotuberculosis strains from Mexico
Doglas Parise1†, Mariana T D Parise1†, Marcus V C Viana1, Adrian V Muñoz-Bucio2, Yazmin A Cortés-Pérez2,
Beatriz Arellano-Reynoso2, Efrén Díaz-Aparicio2, Fernanda A Dorella3, Felipe L Pereira3, Alex F Carvalho3,
Henrique C P Figueiredo3, Preetam Ghosh4, Debmalya Barh1,5,6, Anne C P Gomide1 and Vasco A C Azevedo1*

Abstract

Corynebacterium pseudotuberculosis is a pathogenic bacterium which has been rapidly spreading all over the world,
causing economic losses in the agricultural sector and sporadically infecting humans. Six C. pseudotuberculosis
strains were isolated from goats, sheep, and horses with distinct abscess locations. For the first time, Mexican
genomes of this bacterium were sequenced and studied in silico. All strains were sequenced using Ion Personal
Genome Machine sequencer, assembled using Newbler and SPAdes software. The automatic genome annotation was
done using the software RAST and in-house scripts for transference, followed by manual curation using Artemis
software and BLAST against NCBI and UniProt databases. The six genomes are publicly available in NCBI database.
The analysis of nucleotide sequence similarity and the generated phylogenetic tree led to the observation that the
Mexican strains are more similar between strains from the same host, but the genetic structure is probably more
influenced by transportation of animals between farms than host preference. Also, a putative drug target was
predicted and in silico analysis of 46 strains showed two gene clusters capable of differentiating the biovars
equi and ovis: Restriction Modification system and CRISPR-Cas cluster.
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Introduction
Corynebacterium pseudotuberculosis is a Gram-positive
bacterium that infects several different species of mam-
mals. Strains of the biovar ovis infect sheep and goats,
and strains of the biovar equi infect larger mammals
such as horses, camels, and buffaloes. The manifestation
of the infection depends on the host [1–4]. This bacter-
ium causes significant economic loss to animal produc-
tion all over the world due to reduced production of
wool, milk and meat, carcass condemnation, as well as
the death of infected animals [4–6]. C. pseudotuberculosis
can also affect humans, causing distinct kinds of lymph-
adenitis. Contamination occurs through contact with in-
fected animals and consumption of infected food [4, 5, 7].

This organism affects several countries such as Australia,
Brazil, Canada, Egypt, Israel, New Zealand, South Africa,
United Kingdom and United States [4, 8–17]. Cases in
other countries such as Portugal [18], Mexico [19] and
Equatorial Guinea [20] have been reported in the recent
years. In the United States, C. pseudotuberculosis infections
are reemerging and considered endemic [19], and the state
with the highest number of cases of this bacterium was
Texas, which borders Mexico [21]. The spread of C.
pseudotuberculosis to other countries brings out the
importance of improving the understanding of this bacter-
ium. In the present study, six Mexican C. pseudotubercu-
losis strains were investigated, two from the biovar equi
and four from the biovar ovis. This is the first time that
strains of this bacterium, isolated in Mexico, have been
completely sequenced. Among those strains, these are the
first isolates of the biovar equi coming from this country
[19]. The characterization of these strains is important
for achieving a better understanding of this species,
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considering they can present relevant features not yet
identified in other strains.

Organism information
C. pseudotuberculosis is a pathogenic bacterium that be-
longs to the CMNR (Corynebacterium, Mycobacterium,
Nocardia, and Rhodococcus) group. This group is char-
acterized by high GC content (46–74%) and by the
structure of the cell wall which is mainly composed of
peptidoglycan, arabinogalactan and mycolic acids [4, 22].
C. pseudotuberculosis is placed in the phylum Actinobac-
teria, class Actinobacteria, order Actinomycetales, sub-
order Corynebacterineae and genus Corynebacterium
[23–30]. The species is considered a facultative intracel-
lular pathogen [4, 31] which is Gram-positive, pleo-
morphic, non-motile, non-sporulating, mesophilic and
can survive both in the host and in the soil [25, 31–35].
Its strains are classified into two biovars, ovis and equi,
according to its host preference and nitrate reduction
capacity, which is identified through the presence or ab-
sence of the narG gene in a PCR Multiplex test [36].
The biovar equi can reduce nitrate and affects mostly
large ruminants. The biovar ovis is not able to reduce ni-
trate and affects mostly small ruminants [4]. More infor-
mation about classification, general features of this
species and some details about the target strains are
shown in Table 1 (Additional file 1).
Six C. pseudotuberculosis strains were isolated in

Mexico from different hosts and biovars. The strain
MEX1 was isolated from a retropharyngeal abscess in a
goat. The strain MEX9 was isolated from a prescapular
abscess in a goat. The strain MEX25 was isolated from a
parotidean abscess in a sheep. The strain MEX29 was
isolated from a retropharyngeal abscess in a sheep.
These four strains presented negative result for the pres-
ence of the narG gene in the PCR multiplex test and
were classified as belonging to the biovar ovis. All ovis
strains were obtained from outbreaks occurred relatively
close to Mexico City. MEX30 and MEX31 were isolated
from abscesses in the pectoral muscles of two horses
[19]. These two strains were positive for the presence of
the narG gene in PCR Multiplex. Consequently, they
were classified as belonging to the biovar equi. Although
both equi strains were obtained in the same city, they
could be considered as isolated cases.
To verify the phylogenetic relationship of these

strains to other strains of C. pseudotuberculosis, we
generated a phylogenetic tree (Fig. 1) based on the core
proteome and progressive refinement, using a bootstrap
value of 100. The tree was generated using the PEPR
software (https://github.com/enordber/pepr.git) with
the Maximum-Likelihood method. The Mexican strains
were clustered according to the respective biovars and
host preferences, as shown in previous works) [1, 37].

MEX30 and MEX31 were isolated in Valparaiso, in the
first reported case of infection of horses in Mexico [19].
They clustered together probably because they came
from the same source, that could be transported infected
animals. Affected horses were identified in all regions of
the US and the state of Texas, which borders Mexico,
has the highest number of cases) [9, 21].
Ovis strains were isolated in Tlaxcala (MEX1) and Rio

Frio de Juárez (MEX29), with a 50 Km distance from each
other, and Guanajuato (MEX9 and MEX25), within a
400–450 Km distance from the two other isolation local-
ities. However, the strains cluster by host rather than lo-
cality of isolation. MEX1 and MEX9 were isolated from
goat and MEX25 and MEX29 were isolated from sheep.
However, MEX25 and MEX29 (goat) clustered with iso-
lates from lhama (USA) and cow (Israel), while MEX1 and
MEX9 (sheep) clustered with isolates from goat and sheep
(Brazil), all with a 100% bootstrap. Strains of Ovis biovar
are more clonal but does not show the same degree of
clustering by the host as Equi [1, 37]. Considering a max-
imum distance of 450 Km between localities of isolation,
this genetic structure could better be explained by farming
history than host preference. The goat and sheep farms
could have different sources of Ovis strains. Transporta-
tion of infected animals and further contact and transmis-
sion of the disease probably occurred between farms of
the same host species [38–40].

Genome sequencing information
Genome project history
The present project is a collaboration between the
National Autonomous University of Mexico (UNAM),
Mexico City, Mexico, and the Federal University of
Minas Gerais (UFMG), Belo Horizonte, Minas Gerais,
Brazil. The six C. pseudotuberculosis strains were iso-
lated by UNAM researchers. Sequencing was performed
at the National Reference Laboratory for Aquatic
Animal Diseases (AQUACEN), and the two processes of
assembly and annotation were performed at the Labora-
tory of Cellular and Molecular Genetics (LGCM), both
laboratories located at UFMG. All genomes are
complete and available at the National Center for
Biotechnology Information (NCBI). This information
is shown in Table 2 and conforms with MIGS recom-
mendations [41]. As mentioned above, the present
study presents the first sequencing of C. pseudotuber-
culosis, and the first isolation of the biovar equi, from
Mexico. This data can provide new insights into the
diagnosis and treatment of diseases caused by this
organism.

Growth conditions and genomic DNA preparation
The samples used in the present study are in the sample
collection of LGCM. All six strains were grown in a
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brain-heart-infusion media (BHI-HiMedia Laboratories
Pvt. Ltd., India) with 1.5% of bacteriological agar and
supplemented with 0.5% of Tween 80, at 37 °C for 72 h
under rotation. Genomic DNA was extracted following
the protocol of Pacheco et al. [36].

Genome sequencing and assembly
The first step in sequencing each genome was the library
construction, following manufacturer’s recommenda-
tions (IonXpress™ Plus gDNA Fragment Library Prepar-
ation). This was performed in three steps: (i) DNA

Table 1 Classification and general features of Corynebacterium strains MEX1, MEX9, MEX25, MEX29, MEX30, and MEX31 according to
the MIGS recommendations [41]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [23]

Phylum Actinobacteria TAS [24]

Class Actinobacteria TAS [25]

Order Actinomycetales Suborder Corynebacterineae TAS [25–28]

Family Corynebacteriaceae TAS [25, 28]

Genus Corynebacterium TAS [29, 30]

Species Corynebacterium pseudotuberculosis TAS [26, 29]

strain: MEX1 (Accession NZ_CP017711.1)
MEX9 (Accession NZ_CP014543.1),
MEX25 (Accession NZ_CP013697.1),
MEX29 (Accession NZ_CP016826.1),
MEX30 (Accession NZ_CP017291.1),
MEX31 (Accession NZ_CP017292.1)

Gram stain Positive TAS [31]

Cell shape Pleomorphic TAS [31]

Motility Non-motile TAS [31, 35]

Sporulation non-sporulating TAS [31]

Temperature range Mesophilic TAS [32, 35]

Optimum temperature 37 °C TAS [32, 73]

pH range; Optimum 7.0–7.2 TAS [4, 35]

Carbon source Glucose, fructose, maltose, mannose, and sucrose TAS [11, 15]

MIGS-6 Habitat Host and soil TAS [25, 33, 34]

MIGS-6.3 Salinity Up to 2 M NaCl TAS [32]

MIGS-22 Oxygen requirement Aerobic and facultative anaerobic TAS [4, 35, 73]

MIGS-15 Biotic relationship Facultative intracellular pathogen TAS [4, 31]

MIGS-14 Pathogenicity Sheep, goats, horses, cattle, camel, buffalo, rarely humans TAS [4, 37, 74]

MIGS-4 Geographic location MEX1 – Ixtenco, Tlaxcala, Mexico
MEX9 – Salamanca, Guanajuato, Mexico
MEX25 – Celaya, Guanajuato, Mexico
MEX29 - Río Frio, Estado de Mexico, Mexico
MEX30 and MEX31 – Valparaiso, Zacatecas, Mexico

TAS [19]

MIGS-5 Sample collection MEX1–2014, MEX9 and MEX25–2012,
MEX29, MEX30 and MEX31–2013

TAS [19]

MIGS-4.1 Latitude MEX1 – 19o15’11” MEX9–20 o34’26”
MEX25–20 o55’1” MEX29–19 o21’8”
MEX30 and MEX31–22 o46’16”

IDA

MIGS-4.2 Longitude MEX1 – 97o53’45” MEX9 - 101o11’45”
MEX25 - 101o9’42” MEX29 - 98o40’17”
MEX30 and MEX31–103 o34’11”

IDA

MIGS-4.4 Altitude MEX1–8236 ft MEX9–5623 ft
MEX25–6502 ft MEX29–9770 ft
MEX30 and MEX31–6221 ft

IDA

aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are
from the Gene Ontology project [75]
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fragmentation using the Ion Shear™ Plus Reagents
Kit, (ii) addition of adapters using Ion Xpress™ Bar-
code Adapters and (iii) library amplification using
the Ion PGM™ Template OT2 200 kit (all kits from
Thermo Fisher Scientific, USA). The resulting library
was put on the semiconductor chip Ion 318 Chip
Kit v2 (Thermo Fisher Scientific) and then into the

sequencer Ion Personal Genome Machine™ (Thermo
Fisher Scientific). The number of reads and the
mean read length of MEX1, MEX9, MEX25, MEX29,
MEX30 and MEX31 strains are respectively: 1,100,551
and 244; 1,496,261 and 201; 1,117,243 and 206;
1,371,907 and 230; 1,127,325 and 186; and, 1,262,316
and 230.

Fig. 1 Phylogenetic tree of new Corynebacterium pseudotuberculosis strains of this work inside the rectangles, with other strains of the group
CMNR. The blue rectangles highlight the biovar ovis strains and the red rectangle highlights the biovar equi strains of this work. The numbers near
the nodes indicate bootstrap values

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Finished

MIGS-28 Libraries used Fragments

MIGS 29 Sequencing platforms Ion Torrent PGM

MIGS 31.2 Fold coverage 115× (MEX1); 129× (MEX9); 99× (MEX25); 135× (MEX29); 81× (MEX30); 123× (MEX31).

MIGS 30 Assemblers Newbler, SPAdes.

MIGS 32 Gene calling method RAST

Locus Tag CpMEX1_ (MEX1); CpMEX9_ (MEX9); AN397_ (MEX25); CpMEX29_ (MEX29);
CpMEX30_ (MEX30); CpMEX31_ (MEX31);

Genbank ID CP017711 (MEX1); CP014543(MEX9); CP013697 (MEX25); CP016826 (MEX29);
CP017291 (MEX30); CP017292 (MEX31);

GenBank Date of Release 2017/01/30 (MEX1); 2016/05/27 (MEX9); 2015/12/23 (MEX25); 2016/11/03 (MEX29);
2016/12/27 (MEX30); 2016/12/27 (MEX1);

GOLD ID - (MEX1); Go0366057 (MEX9); Go0139540 (MEX25); Go0364114 (MEX29); Go0364489
(MEX30); Go0364678 (MEX31);

BIOPROJECT PRJNA348354 (MEX1); PRJNA312392 (MEX9); PRJNA294672 (MEX25); PRJNA335634
(MEX29); PRJNA343017 (MEX30); PRJNA341961 (MEX31);

MIGS 13 Source Material Identifier BHI broth

Project relevance Animal Pathogen, Medical
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The assembly process was managed using SIMBA soft-
ware [42]. The quality assessment of the reads was per-
formed using FastQC software [43]. The assemblies were
performed using SPAdes version 3.6 [44] on MEX1 and
MEX31; and, Newbler version 2.9 (Roche, USA) on
MEX9, MEX25, MEX29, and MEX30. This produced
the following contigs: 6 on MEX1, 7 on MEX9, 7 on
MEX25, 9 on MEX29, 33 on MEX30 and 13 on MEX31.
The N50 s were: 543,202 on MEX1, 372,309 on MEX9,
543,326 on MEX25, 367,275 on MEX29, 103,276 on
MEX30 and 535,978 on MEX31. The QUAST software
[45] was used to evaluate the quality of the assemblies
for all strains. The scaffolds were constructed using
CONTIGuator software version 2.0 [46] with C. pseudo-
tuberculosis strain 29,156 (CP010795.1) as a reference to
MEX9, MEX25 and MEX29, C. pseudotuberculosis strain
MEX9 as a reference to MEX1, C. pseudotuberculosis
strain 316 (CP003077.1) as a reference to MEX30 and C.
pseudotuberculosis strain E19 (CP012136.1) as a refer-
ence to MEX31. Gap closure was performed using CLC
Genomics Workbench 7 (Qiagen, USA). This process re-
sulted in six complete genome sequences.

Genome annotation
Genome annotation was performed in two steps: auto-
matic annotation and manual curation. The RAST [47]
and tRNAscan-SE [48] software were used in the auto-
mated annotation. An in-house script was also employed
to transfer the annotation from a reference genome. The
Artemis software version 16.0.0 [49], the UniProt [50]
and the National Center for Biotechnology Information
(NCBI) databases [51] were used in the manual curation.

Putative frameshifts were analyzed using CLC Genomics
Workbench 7 (Qiagen, USA) and fixed whenever possible.

Genome properties
Genome sizes of the respective strains are: 2,337,090 bp
(base pairs) on MEX1, 2,337,578 bp on MEX9,
2,337,529 bp on MEX25, 2,337,866 bp on MEX29,
2,368,140 bp on MEX30 and 2,367,880 bp on MEX31.
The respective percentages of the predicted coding re-
gions are: 86.16% on MEX1, 86.33% on MEX9, 85.94%
on MEX25, 86.66% on MEX29, 83.06% on MEX30 and
86.64% on MEX31. These genome sizes and the G + C
content (~ 52%) are consistent with other C. pseudotu-
berculosis studies [2, 6, 52]. There are 64 predicted RNA
genes in strains of the biovar ovis (MEX1, MEX9,
MEX25 and MEX29) and 66 from the biovar equi
(MEX30 and MEX31). The numbers (and percentages)
of predicted protein coding genes and pseudogenes of
MEX1, MEX9, MEX25, MEX29, MEX30 and MEX31
strains are, respectively: 2021 (94.22%) and 60 (2.80%);
2025 (94.36%) and 57 (2.66%); 2016 (94.07%) and 63
(2.94%); 2032 (94.73%) and 49 (2.28%); 2008 (91.77%)
and 114 (5.21%); and 2058 (94.32%) and 61 (2.80%).
Table 3 shows detailed information about properties and
statistics of these genomes. The number of genes associ-
ated with general COG functional categories [53, 54]
was generated with the in-house script Blast Cog
(https://github.com/aquacen/blast_cog) and are summa-
rized in Table 4. The circular maps of C. pseudotubercu-
losis MEX1 and MEX30 strains in comparison with the
other strains of the present study are shown in Figs. 2
and 3, respectively.

Table 3 Genome statistics

Attribute MEX1 MEX9 MEX25 MEX29 MEX30 MEX31

Value % Value % Value % Value % Value % Value %

Genome size (bp) 2,337,090 100.0 2,337,578 100.0 2,337,529 100.0 2,337,866 100.0 2,368,140 100.0 2,367,880 100.0

DNA coding (bp) 2,012,758 86.12 2,017,915 86.33 2008,915 85.94 2025,972 86.66 1,966,942 83.06 2,051,473 86.64

DNA G + C (bp) 1,219,520 52.18 1,219,842 52.18 1,219,763 52.18 1,219,957 52.18 1,234,064 52.11 1,233,547 52.10

DNA scaffolds 1 100.0 1 100.0 1 100.0 1 100.0 1 100.0 1 100.0

Total genes 2145 100.0 2146 100.0 2143 100.0 2145 100.0 2188 100.0 2182 100.0

Protein coding genes 2021 94.22 2025 94.36 2016 94.07 2032 94.73 2008 91.77 2058 94.32

RNA genes 64 2.98 64 2.98 64 2.99 64 2.98 66 3.02 63 2.89

Pseudo genes 60 2.80 57 2.66 63 2.94 49 2.28 114 5.21 61 2.80

Genes in internal clusters NA NA NA NA NA NA NA NA NA NA NA NA

Genes with function prediction 1579 73.61 1576 73.44 1583 73.87 1578 73.57 1605 73.36 1610 73.79

Genes assigned to COGs 2007 93.57 2013 93.80 2009 93.75 2020 94.17 1998 91.32 2046 93.77

Genes with Pfam domains 1679 78.28 1675 78.05 1670 77.93 1690 78.79 1664 76.05 1731 79.33

Genes with signal peptides 157 7.32 151 7.04 159 7.42 155 7.23 144 6.58 153 7.01

Genes with transmembrane helices 595 27.74 591 27.54 585 27.30 601 28.02 585 26.74 596 27.31

CRISPR repeats 0 00 0 1 0.05 1 0.05 1 0.05 4 0.18 4 0.18
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Insights from the genome sequence
The nucleotide sequences, analyzed using the Gegenees
software version 2.1 [55], show high similarity (> 92%)
between the strains. Higher similarity (> = 99.7%) within
strains belonging to the same biovar was found (Fig. 4).
This is consistent with a previous study [1], using 15
strains of C. pseudotuberculosis, that shows similarity
greater than 99% within the biovar ovis strains and at
least 95% of sequencing similarity within the biovar equi
strains. Moreover, the sequencing similarity among
strains isolated from the same host is higher than the
similarity among strains isolated from different hosts
(Figs. 1 and 4).
Traditionally, the two biovars are differentiated using a

nitrate reduction test, in which equi is positive, and ovis
is negative [56]. Figure 3 highlights the cluster of genes
related to nitrate reduction in Mexican equi strains with
the black rectangle. The Protein Family Sorter tool [57]
was used to search for genes or clusters of genes that
may be used to differentiate the biovars. Within the six

Fig. 2 Circular map of C. pseudotuberculosis strain MEX1 (biovar ovis) in
comparison with the other strains of this study. The cluster of methylation
type III, which is only present in biovar ovis strains, is highlighted in blue

Table 4 Number of genes associated with general COG functional categories

Code MEX1 MEX9 MEX25 MEX29 MEX30 MEX31 Description

Value %age Value %age Value %age Value %age Value %age Value %age

J 182 9.01 182 8.99 181 8.98 186 9.15 183 9.11 189 9.18 Translation, ribosomal structure and biogenesis

A 2 0.10 2 0.10 2 0.10 2 0.10 2 0.10 2 0.10 RNA processing and modification

K 138 6.83 139 6.87 137 6.80 138 6.79 136 6.77 134 6.51 Transcription

L 105 5.20 105 5.19 96 4.76 102 5.02 102 5.08 101 4.91 Replication, recombination and repair

B 0 0 0 0 0 0 0 0 1 0.05 0 0 Chromatin structure and dynamics

D 44 2.18 43 2.12 45 2.23 45 2.22 43 2.14 47 2.28 Cell cycle control, Cell division, chromosome
partitioning

V 68 3.37 67 3.31 69 3.42 71 3.49 75 3.74 70 3.40 Defense mechanisms

T 99 4.90 101 4.99 99 4.91 103 5.07 98 4.88 98 4.76 Signal transduction mechanisms

M 124 6.14 122 6.03 119 5.90 120 5.91 119 5.93 117 5.69 Cell wall/membrane biogenesis

N 21 1.04 22 1.09 20 0.99 20 0.98 13 0.65 17 0.83 Cell motility

U 32 1.58 31 1.53 30 1.49 31 1.53 29 1.44 30 1.46 Intracellular trafficking and secretion

O 128 6.33 122 6.03 121 6.00 126 6.20 122 6.08 122 5.93 Posttranslational modification, protein turnover,
chaperones

C 125 6.19 124 6.12 116 5.75 124 6.10 123 6.13 121 5.88 Energy production and conversion

G 158 7.82 154 7.61 151 7.49 156 7.68 151 7.52 161 7.82 Carbohydrate transport and metabolism

E 212 10.49 213 10.52 204 10.12 213 10.48 219 10.91 223 10.84 Amino acid transport and metabolism

F 82 4.06 82 4.05 79 3.92 82 4.04 78 3.88 81 3.94 Nucleotide transport and metabolism

H 143 7.08 141 6.96 135 6.70 141 6.94 151 7.52 152 7.39 Coenzyme transport and metabolism

I 92 4.55 91 4.49 90 4.46 93 4.58 86 4.28 87 4.23 Lipid transport and metabolism

P 162 8.02 157 7.75 162 8.04 162 7.97 166 8.27 168 8.16 Inorganic ion transport and metabolism

Q 49 2.43 46 2.27 46 2.28 48 2.36 52 2.59 50 2.43 Secondary metabolites biosynthesis, transport,
and catabolism

R 170 8.41 164 8.10 157 7.79 167 8.22 167 8.32 169 8.21 General function prediction only

S 138 6.83 142 7.01 127 6.30 141 6.94 138 6.87 140 6.80 Function unknown

– 14 0.69 12 0.59 7 0.35 12 0.59 10 0.50 12 0.58 Not in COGs

The total is based on the total number of protein coding genes in the genome
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genomes of the present study, we found the cluster of
genes that is related to proteins of type III restriction-
modification (RM) systems [58, 59] exclusively in the bio-
var ovis (highlighted in blue in Fig. 2). A cluster of genes
related to the proteins of Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR-Cas) systems, prob-
ably belonging to type I-E [60], was found exclusively in
the biovar equi (highlighted in blue in Fig. 3). Both sys-
tems work as protection systems, defending the bacteria
against exogenous DNA. We analyzed 40 other sequenced
strains of C. pseudotuberculosis to confirm these results in
other strains. The same pattern was observed.
RM systems have two main components, a DNA

methyltransferase, and a restriction endonuclease. The
first one methylates the DNA in possible cleavage sites;
the second one is responsible for the cleavage of DNA
from external sources [61]. A good review of RM

systems can be found in [62]. CRISPR-Cas systems are
adaptive immune systems in bacteria and archaea. They
use a complex of proteins known as Cas that are respon-
sible for acquiring new, short sequences of external
sources (exogenous genetic elements). These short se-
quences are incorporated into the bacterial chromosome
and are called CRISPRs. The CRISPRs are transcribed
into small RNAs that guide the Cas proteins to
recognize and cleave foreign DNA, protecting the bac-
terial genome [63]. Reviews of CRISPR-Cas systems can
be found in [63–65].
Possible new drug targets were predicted using the

Specialty Genes Search from the Pathosystems Resource
Integration Center (PATRIC) bioinformatics resource
center [66]. The result shows a new putative target, the
gene nrdF2, for five of the six strains used in the present
study. In the C. pseudotuberculosis MEX30 strain, this
gene is annotated as a pseudogene, which can explain
why it was not considered a putative target. The product
of this gene is the small subunit of ribonucleotide reduc-
tase (RNR) which is involved in dNTP (deoxynucleotide
triphosphate) synthesis that reduces ribonucleotides to
nucleotides. The RNRs can be classified into three clas-
ses (I, II and III). Class I is oxygen dependent and has
two subclasses (Ia and Ib). Class Ia is coded by nrdA and
nrdB genes; class Ib is coded by nrdE and nrdF. There-
fore, the RNR found in the biovar ovis strains belongs to
class Ib [67]. Previous studies [68–70] show the import-
ance of this gene for growth under normal conditions
(in vitro) in Mycobacterium tuberculosis, Corynebacter-
ium ammoniagenes and Corynebacterium glutamicum.
Additionally, other studies have pointed to this gene as a
potential target of M. tuberculosis vaccine [70–72].

Conclusions
In the present study, we investigated six strains of C.
pseudotuberculosis from different hosts and their se-
quenced genomes, the first whole-genome investigation
of this organism from Mexico. The phylogenomic

Fig. 4 Alignment generated using Gegenees software showing the percentage similarity among the strains, based on the accessory genome. The
blue rectangle highlights the grouping of the biovar ovis. The red rectangle highlights the grouping of the biovar equi

Fig. 3 Circular map of C. pseudotuberculosis strain MEX30 (biovar equi) in
comparison with the other strains of this study. The cluster of CRISPR-
Cas, which is only present in biovar equi strains, is highlighted in blue.
The nitrate reductase gene cluster is highlighted by a black rectangle
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analysis suggested that the genetic structure of Ovis is
more influenced by animal transportation than host
preference. An in silico analysis of protein families
showed two important clusters that may differentiate the
biovars equi and ovis. Also, the present work identified a
new putative drug target against C. pseudotuberculosis,
the gene nrdF2, which has been previously described as
a potential vaccine target [70–72]. Further in silico and
in vitro analyses are required to validate these findings.
Those results could provide a better understanding of
this organism and its mechanisms of virulence and
pathogenesis, as well as develop new diagnoses, vaccines,
and treatments.
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