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Riemerella anatipestifer (Hendrickson and Hilbert 1932) Segers et al. 1993 is the type species 
of the genus Riemerella, which belongs to the family Flavobacteriaceae. The species is of in-
terest because of the position of the genus in the phylogenetic tree and because of its role as 
a pathogen of commercially important avian species worldwide. This is the first completed 
genome sequence of a member of the genus Riemerella. The 2,155,121 bp long genome with 
its 2,001 protein-coding and 51 RNA genes consists of one circular chromosome and is a part 
of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
No strain designation has been published for the 
type strain of Riemerella anatipestifer; therefore it 
will be referred to in this publication as ATCC 
11845T, after the earliest known deposit (= DSM 
15868 = ATCC 11845 = JCM 9532). Strain ATCC 
11845T is the type strain of R. anatipestifer which 
is the type species of the genus Riemerella. The 
organism was described for the first time by Hen-
drickson and Hilbert in 1932 as 'Pfeifferella anati-
pestifer' [1], was subsequently known as 
'Pasteurella anapestifer' [2] and renamed by Brun-
er and Fabricant in 1954 as Moraxella anatipesti-
fer [3,4]. However, since the organism is closely 

related to neither the genus Moraxella nor to Pas-
teurella [5] it was reclassified as a novel genus by 
Segers et al. in 1993 [6]. The reclassification was 
confirmed by subsequent 16S rRNA gene se-
quence analysis [7,8]. The generic name was given 
in honor to Riemer, who first described R. anati-
pestifer infections in geese in 1904 and referred to 
the disease as septicemia anserum exsudativa [9]. 
The species epithet is derived from the Latin noun 
'anas/atis' meaning 'duck', and the Latin adjective 
'pestifer' meaning 'pestilence-carrying' referring 
to the pathogenic effect the species has on water-
fowl, especially ducks. The type strain of the spe-
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cies was isolated from blood of ducklings on Long 
Island, New York, and identified by Bruner in 
1954 [3]. Further isolates were obtained from all 
kinds of avian hosts, however, pigeons and mam-
mals are not infected by this species. R. anatipesti-
fer is distributed worldwide and causes serious 
problems in agricultural flocks of duck, goose and 
turkey [10], but it has also been found in the up-
per respiratory tract of clinically healthy birds [7]. 
There is no indication that the organism can sur-
vive outside of its host. Currently, there are two 
species in the genus Riemerella. The only other 
validly published species of the genus is R. colum-
bina which is mainly associated with respiratory 
disease in pigeons [11]. Here we present a sum-
mary classification and a set of features for R. ana-
tipestifer ATCC 11845T, together with the descrip-
tion of the complete genomic sequencing and an-
notation. 

Classification and features 
A representative genomic 16S rRNA sequence 
from strain ATCC 11845T was compared using 
NCBI BLAST under default settings (e.g., consider-
ing only the high-scoring segment pairs (HSPs) 
from the best 250 hits) with the most recent re-
lease of the Greengenes database [12] and the rel-
ative frequencies, weighted by BLAST scores, of 
taxa and keywords (reduced to their stem [13]) 
were determined. The five most frequent genera 

were Riemerella (79.2%), Chryseobacterium 
(17.1%), Bergeyella (2.6%), “Rosa” (0.6%; misno-
mer) and Cloacibacterium (0.5%) (166 hits in to-
tal). Regarding the 124 hits to sequences from 
members of the species, the average identity with-
in HSPs was 99.5%, whereas the average coverage 
by HSPs was 95.2%. Among all other species, the 
one yielding the highest score was “Rosa chinen-
sis”, apparently a severe misannotation, which 
corresponded to an identity of 99.8% and an HSP 
coverage of 91.9%. The highest-scoring environ-
mental sequence was EF219033 ('structure and 
significance Rhizobiales biofouling biofilms on re-
verse osmosis membrane treating MBR effluent 
clone RO224'), which showed an identity of 96.0% 
and a HSP coverage of 97.8%. The five most fre-
quent keywords within the labels of environmen-
tal samples which yielded hits were 'skin' 
(10.3%), 'human' (4.9%), 'biota, cutan, lesion, pso-
riat' (4.0%) and 'fossa' (4.0%) (84 hits in total). 
Environmental samples which yielded hits of a 
higher score than the highest scoring species were 
not found. 
Figure 1 shows the phylogenetic neighborhood of 
R. anatipestifer in a 16S rRNA based tree. The se-
quences of the three identical 16S rRNA gene cop-
ies in the genome differ by one nucleotide from 
the previously published 16S rRNA sequence 
(U60101). 

 

Figure 1. Phylogenetic tree highlighting the position of R. anatipestifer relative to a selection of the other type 
strains within the family Flavobacteriaceae. The tree was inferred from 1,391 aligned characters [14,15] of the 16S 
rRNA gene sequence under the maximum likelihood criterion [16] and rooted with the type strain of the family 
Flavobacteriaceae. The branches are scaled in terms of the expected number of substitutions per site. Numbers 
above branches are support values from 750 bootstrap replicates [17] if larger than 60%. Lineages with type strain 
genome sequencing projects registered in GOLD [18] are shown in blue, published genomes in bold. 
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The cells of R. anatipestifer are generally rod-shaped 
(0.3-0.5 × 1.0-2.5 µm) with round ends (Figure 2) 
[6]. R. anatipestifer is a Gram-negative, non spore-
forming bacterium (Table 1). The organism is de-
scribed as non-motile. Gliding motility is not ob-
served. Only three genes associated with motility 
have been found in the genome (see below). The or-
ganism is a capnophilic chemoorganotroph which 
prefers microaerobic conditions for growth. The op-
timum temperature for growth is 37°C, most strains 
can grow at 45°C but not at 4°C. Catalase and oxi-
dase are present, thiamine is required for growth 
[6]. R. anatipestifer is not able to reduce nitrate and 
does not produce hydrogen sulfide. The organism 
tolerates 10% bile in serum but no growth occurs on 
agar containing 40% bile in serum [6]. Many bio-
chemical reactions are negative or strain-dependent: 
Hinz et al. have stated that “R. anatipestifer is not 
easy to identify because it is characterized more by 
the absence than by the presence of specific bio-
chemical properties” [31]. The organism has proteo-
lytic activity but its capacity to utilize carbohydrates 
is strain-dependent and has been discussed contro-
versially. It has been described that carbohydrates 
are used oxidatively and that R. anatipestifer is able 
to produce acid from glucose and maltose, less often 
from fructose, dextrin, mannose, trehalose, inositol, 
arabinose and rhamnose [31]. The production of 
indole is strain-dependent; the type strain does not 
produce indole [6]. Esculin is not hydrolyzed by 
most R. anatipestifer strains, a trait useful for distin-
guishing these strains from R. columbina strains 
[32]. Strain ATCC 11845T exhibits positive reactions 

for alkaline and acid phosphatase, ester lipase C8, 
leucine arylamidase, valine arylamidase, cystine ary-
lamidase, phophoamidase, α-glucosidase and este-
rase C4. It does not produce α- and β-galactosidases, 
β-glucuronidase, β-glucosidase, α-mannosidase, β-
glucosaminidase, lipase C14, fucosidase, trypsin, or-
nithine and lysine decarboxylases and phenylalanine 
deaminase [6]. 
R. anatipestifer is generally susceptible to enroflox-
acin, amoxicillin, chloramphenicol, novobiocin, spi-
ramycin, lincomycin and tetracyclines. Antibiotic 
resistance of the organism is steadily increasing: 
resistance to penicillin G, streptomycin and sulfo-
namides has been reported and more than 90% of 
all strains are resistant to polymyxin B, colistin, 
gentamycin, neomycin and kanamycin [33]. The 
transmission of R. anatipestifer in ducks occurs ver-
tically through the egg as well as horizontally via 
the respiratory route. The disease affects primarily 
young ducks where it typically involves the respira-
tory tract and nervous system. Ocular and nasal 
discharge are often typical for the onset of the dis-
ease, lameness can be observed at a later state. The 
mortality ranges between 1 and 10%, surviving 
animals may be stunted [34,35]. Vaccination of 
flocks has proven a valuable course of protection, 
however, immunity is serovar-specific and more 
than 20 serovars of R. anatipestifer are known [36]. 
It is remarkable that R. anatipestifer persists post-
infection on duck farms; biofilm formation of the 
organism is discussed as one possible explanation 
[37]. 

 

Figure 2. Scanning electron micrograph of R. anatipestifer ATCC 11845T 
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Chemotaxonomy 
Few data are available for R. anatipestifer strain 
ATCC 11845T. The sole respiratory quinone found 
in this species is menaquinone [38]. Which specif-
ic quinone is present in R. anatipestifer remains 
unclear from the literature: whereas Segers et al. 
specify menaquinone 7 as sole respiratory qui-
none in the type strain [6], Vancanneyt et al. claim 
menaquinone 6 is the major respiratory quinone 

of the type species [11]. Typically, representatives 
of the genus Riemerella contain branched-chain 
fatty acids in high percentages. Major fatty acids of 
R. anatipestifer are iso-C15:0 (50-60%), iso-C13:0 
(15-20%), 3-hydroxy iso-C17:0 (13-18%), 3-
hydroxy anteiso-C15:0 (8-11%) and anteiso-C15:0 (6-
8%) [6]. 

Table 1. Classification and general features of R. anatipestifer ATCC 11845T according to the MIGS recommendations [19]. 
MIGS ID Property Term Evidence code 
 

Current classification 

Domain Bacteria TAS [20] 

Phylum Bacteroidetes TAS [21,22] 

Class 'Flavobacteria' TAS [21,23] 

Order 'Flavobacteriales' TAS [21,24] 

Family Flavobacteriaceae TAS [21,25-28] 

Genus Riemerella TAS [6,11] 

Species Riemerella anatipestifer TAS [6] 

Type strain ATCC 11845 NAS 
 Gram stain negative TAS [3] 
 Cell shape rod-shaped with rounded ends, single or in pairs TAS [3] 
 Motility non-motile TAS [3] 
 Sporulation none TAS [6] 
 Temperature range mesophile TAS [6] 
 Optimum temperature 37°C TAS [3] 
 Salinity normal NAS 
MIGS-22 Oxygen requirement microaerobic TAS [3] 
 Carbon source proteins TAS [6] 
 Energy source chemoorganotroph TAS [6] 
MIGS-6 Habitat waterfowl and other birds TAS [6] 
MIGS-15 Biotic relationship symbiotic TAS [6] 
MIGS-14 Pathogenicity septicemia TAS [6] 
 Biosafety level 2 TAS [29] 
 Isolation duck blood TAS [3] 
MIGS-4 Geographic location Long Island, New York, USA TAS [3] 
MIGS-5 Sample collection time 1954 TAS [3] 
MIGS-4.1 Latitude not reported  
MIGS-4.2 Longitude not reported  
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., 
a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the liv-
ing, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These 
evidence codes are from of the Gene Ontology project [30]. If the evidence code is IDA, then the property was di-
rectly observed by one of the authors or an expert mentioned in the acknowledgements. 
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Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [39], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [40]. The genome project is depo-
sited in the Genomes On Line Database [18] and 

the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (14 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 431 × Illumina; 77.6 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.3, Velvet 0.7.63, phrap SPS - 4.24 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002346 
 Genbank Date of Release December 2, 2010 
 GOLD ID Gc01548 
 NCBI project ID 41989 
 Database: IMG-GEBA 2503538031 
MIGS-13 Source material identifier DSM 15868 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
R. anatipestifer ATCC 11845T, DSM 15868, was 
grown microaerobically in DSMZ medium 535 
(Trypticase Soy Broth Medium) [41] at 37°C. DNA 
was isolated from 0.5-1 g of cell paste using Mas-
terPure Gram-positive DNA purification kit (Epi-
centre MGP04100) following the standard proto-
col as recommended by the manufacturer, with 
modification st/DL for cell lysis as described in 
Wu et al. [40]. DNA is available through the DNA 
Bank Network [42]. 

Genome sequencing and assembly 
The draft genome was generated at the DOE Joint 
Genome Institute (JGI) using a combination of Il-
lumina and 454 technologies (Roche). For this ge-
nome, we constructed and sequenced an Illumina 
GAii shotgun library which generated 26,937,600 
reads totaling 969.8 Mb, a 454 Titanium standard 
library which generated 238,617 reads and a 
paired end 454 library with an average insert size 
of 14.3 kb which generated 112,671 reads totaling 
141.8 Mb of 454 data. All general aspects of li-
brary construction and sequencing performed at 
the JGI can be found at [43]. The initial draft as-
sembly contained 28 contigs in one scaffold. The 

454 Titanium standard data and the 454 paired 
end data were assembled together with Newbler, 
version 2.3. The Newbler consensus sequences 
were computationally shredded into 2 kb over-
lapping fake reads (shreds). Illumina sequencing 
data was assembled with VELVET, version 0.7.63 
[44], and the consensus sequences were computa-
tionally shredded into 1.5 kb overlapping fake 
reads (shreds). We integrated the 454 Newbler 
consensus shreds, the Illumina VELVET consensus 
shreds and the read pairs in the 454 paired end 
library using parallel phrap, version SPS - 4.24 
(High Performance Software, LLC). The software 
Consed [45] was used in the following finishing 
process. Illumina data was used to correct poten-
tial base errors and increase consensus quality 
using the software Polisher developed at JGI [46]. 
Possible mis-assemblies were corrected using ga-
pResolution [43], Dupfinisher [47], or sequencing 
cloned bridging PCR fragments with subcloning. 
Gaps between contigs were closed by editing in 
Consed, by PCR and by Bubble PCR (J-F Cheng, 
unpublished) primer walks. A total of 388 addi-
tional reactions were necessary to close gaps and 
to raise the quality of the finished sequence. The 
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error rate of the completed genome sequence is 
less than 1 in 100,000. Together, the combination 
of the Illumina and 454 sequencing platforms pro-
vided 508.6 × coverage of the genome. 

Genome annotation 
Genes were identified using Prodigal [48] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [49]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-

ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [50]. 

Genome properties 
The genome consists of a 2,155,121 bp long chro-
mosome with a G+C content of 35.0% (Figure 3 
and Table 3). Of the 2,052 genes predicted, 2,001 
were protein-coding genes, and 51 RNAs; 29 
pseudogenes were also identified. The majority of 
the protein-coding genes (64.1%) were assigned 
with a putative function while the remaining ones 
were annotated as hypothetical proteins. The dis-
tribution of genes into COGs functional categories 
is presented in Table 4. 

Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward 
strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 2,155,121 100.00% 
DNA coding region (bp) 1,948,611 90.42% 
DNA G+C content (bp) 754,510 35.01% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 2,052 100.00% 
RNA genes 51 2.49% 
rRNA operons 3  
Protein-coding genes 2,001 97.51% 
Pseudo genes 29 1.41% 
Genes with function prediction 1,316 64.10% 
Genes in paralog clusters 125 6.09% 
Genes assigned to COGs 1,283 64.13% 
Genes assigned Pfam domains 1,411 68.76% 
Genes with signal peptides 472 23.00% 
Genes with transmembrane helices 414 20.18% 
CRISPR repeats 2  

 

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 133 9.7 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 70 5.1 Transcription 
L 92 6.7 Replication, recombination and repair 
B 0 0.0 Chromatin structure and dynamics 
D 19 1.4 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 22 1.6 Defense mechanisms 
T 32 2.3 Signal transduction mechanisms 
M 139 10.2 Cell wall/membrane/envelope biogenesis 
N 3 0.2 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 26 1.9 Intracellular trafficking, secretion, and vesicular transport 
O 66 4.8 Posttranslational modification, protein turnover, chaperones 
C 77 5.6 Energy production and conversion 
G 39 2.9 Carbohydrate transport and metabolism 
E 101 7.4 Amino acid transport and metabolism 
F 52 3.8 Nucleotide transport and metabolism 
H 83 6.1 Coenzyme transport and metabolism 
I 56 4.1 Lipid transport and metabolism 
P 88 6.4 Inorganic ion transport and metabolism 
Q 20 1.5 Secondary metabolites biosynthesis, transport and catabolism 
R 159 11.6 General function prediction only 
S 89 6.5 Function unknown 
- 769 37.5 Not in COGs 
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