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Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bac-
terium that is motile via periplasmic flagella. The type strain, H1T, was isolated in 1990 from 
cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of in-
terest because it enhances the degradation of cellulose when grown in co-culture with Clos-
tridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on 
phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassi-
fication of S. caldaria and two other Spirochaeta species as members of the emended genus 
Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished 
genomic features related to their divergent lifestyles, the physiological and functional ge-
nomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little 
taxonomic value. The 3,239,340 bp long genome of strain H1T with its 2,869 protein-coding 
and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 
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Introduction 
Strain H1T (= DSM 7334 = ATCC 51460) is the type 
strain of the species Spirochaeta caldaria [1,2] in 
the genus Spirochaeta (which currently contains 
19 validly named species [3,4]) and was first iso-
lated from cyanobacterial mat samples collected 
at a freshwater hot spring in Oregon, USA [1]. The 
genus name was derived from the latinized Greek 
words 'speira' meaning 'a coil' and 'chaitê' mean-
ing 'hair', yielding the Neo-Latin 'Spirochaeta', 
'coiled hair' [3]. The species epithet is derived 
from the Latin adjective 'caldaria', 'pertaining to 
warm water' (intended to mean inhabiting warm 
water) [3]. References to S. caldaria in PubMed 
are rather sparse. In 1996 Paster et al. reported S. 
caldaria as the closest relative to a spirochaete 
clone from the hindguts of an African higher ter-
mite, Nasutermites lujae [5], an observation that 
was underlined three years later when Lilburn et 
al. identified S. caldaria as a close relative of the 
majority of the ‘spirochaetes’ in the gut of the 
termite Reticulitermes flavipes [6]. In the same 
year (1999) Ohkuma et al. confirmed this observa-
tion for symbiotic ‘spirochaetes’ in the gut of di-
verse termites [7]. Here we present a summary 
classification and a set of features for S. caldaria 
strain H1T, together with the description of the 
complete genome sequencing and annotation. 

Features of the organism 
A representative genomic 16S rRNA sequence of S. 
caldaria H1T was compared using NCBI BLAST 
[8,9] under default settings (e.g., considering only 
the high-scoring segment pairs (HSPs) from the 
best 250 hits) with the most recent release of the 
Greengenes database [10] and the relative fre-
quencies of taxa and keywords (reduced to their 
stem [11]) were determined, weighted by BLAST 
scores. The most frequently occurring genera 
were Spirochaeta (79.9%) and Treponema 
(20.1%) (17 hits in total). Regarding the two hits 
to sequences from members of the species, the 
average identity within HSPs was 99.4%, whereas 
the average coverage by HSPs was 98.4%. Regard-
ing the five hits to sequences from other members 
of the genus, the average identity within HSPs was 
94.3%, whereas the average coverage by HSPs 
was 96.3%. Among all other species, the one yield-
ing the highest score was “Spirochaeta 
taiwanensis” AY35103, which corresponded to an 
identity of 95.2% and an HSP coverage of 94.4%. 
(Note that the Greengenes database uses the 

INSDC (= EMBL/NCBI/DDBJ) annotation, which is 
not an authoritative source for nomenclature or 
classification.) The highest-scoring environmental 
sequence was FJ462015 ('Microbial ecology in-
dustrial digester mesophilic anaerobic reactor fed 
effluent chemical industry clone 71a'), which 
showed an identity of 97.9% and an HSP coverage 
of 98.1%. The most frequently occurring key-
words within the labels of all environmental sam-
ples which yielded hits were 'termit' (26.5%), 
'hindgut' (17.8%), 'gut' (8.6%), 'homogen' (5.5%) 
and 'flagel' (2.1%) (233 hits in total), which is in 
line with previous observations about close rela-
tives in termite guts [5-7]. Environmental samples 
which yielded hits of a higher score than the high-
est scoring species were not found. 
Figure 1 shows the phylogenetic neighborhood of 
S. caldaria in a 16S rRNA based tree. The sequenc-
es of the three 16S rRNA gene copies in the ge-
nome differ from each other by up to three nucleo-
tides, and differ by up to four nucleotides from the 
previously published 16S rRNA sequence 
EU580141. 

Morphology and physiology 
Cells of S. caldaria were helical, 0.2 to 0.3 µm in 
diameter and 15 to 25 µm in length (Figure 2); 
spherical bodies were seen in stationary-phase 
cultures (not visible in Figure 2). The cells are mo-
tile by two periplasmic flagella in a 1:2:1 ar-
rangement [1]. S. caldaria is a Gram-negative, 
strictly anaerobic, thermophile (Table 1) with an 
optimal growth temperature between 48°C and 
52°C, and no growth observed above 60°C or be-
low 25°C [1]. The pH range for growth is 5.8-8.5, 
with an optimum at pH 7.2-7.5 [1]. S. caldaria tol-
erates a NaCl concentration of up to 0.25% 
(wt/vol), but no growth was observed in the pres-
ence of 0.4% (wt/vol) NaCl or higher concentra-
tions [1]. On agar plates strain H1T forms white, 
fluffy, cotton-ball like colonies. 

S. caldaria utilizes pentoses, hexoses and disac-
charides as carbon and energy sources. Amino ac-
ids cannot be fermented. Glucose is fermented to 
H2, CO2, acetate and lactate as the main fermenta-
tion products, ethanol is not produced [1]. H1T is 
able to ferment L-arabinose, D-galactose, D-
glucose, D-mannose, D-fructose, D-xylose, 
cellobiose, cellotriose, cellotetraose, lactose, malt-
ose, sucrose and starch.  
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D-ribose, mannitol, cellulose, xylan, glycerol, pep-
tone, casein hydrolysate, and sodium acetate are 
not utilized [1]. Exogenous fatty acids, reported to 
be required by Treponema species for cellular li-
pid synthesis and growth [38], are not required. A 
supplement with vitamins is, however, required 
[1]. S. caldaria grows in the presence of rifampicin 
(100 µg/ml of medium), but growth is inhibited by 
penicillin G, neomycin, chloramphenicol or tetra-
cycline (10 µg/ml of medium each) [1]. 
 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [39], and is part 
of the Genomic Encyclopedia of Bacteria and 
Archaea project [40]. The genome project is de-
posited in the Genomes On Line Database [18] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI) using state of the art sequencing tech-
nology [41]. A summary of the project information 
is shown in Table 2. 

 
Figure 1. Phylogenetic tree highlighting the position of S. caldaria relative to the type strains of the other species within 
the family Spirochaetaceae. The tree was inferred from 1,362 aligned characters [12,13] of the 16S rRNA gene se-
quence under the maximum likelihood (ML) criterion [14]. Rooting was done initially using the midpoint method [15] 
and then checked for its agreement with the current classification (Table 1). The branches are scaled in terms of the ex-
pected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 ML bootstrap 
replicates [16] (left) and from 1,000 maximum-parsimony bootstrap replicates [17] (right) if larger than 60%. Lineages 
with type strain genome sequencing projects registered in GOLD [18] are labeled with one asterisk, those also listed as 
'Complete and Published' with two asterisks [19-23] (for S. thermophila, T. azotonutricium and T. primitia see 
CP002903, CP001841 and CP001883). Note: Spirochaeta coccoides was effectively renamed to Sphaerochaeta 
coccoides in [19] (see Validation List 147 [24].) 
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Figure 2. Scanning electron micrograph of S. caldaria strain H1T 

Table 1. Classification and general features of S. caldaria H1T according to the MIGS recom-
mendations [25] and the NamesforLife database [4]. 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [26] 
Phylum Spirochaetae TAS [27,28] 
Class Spirochaetes TAS [29,30] 
Order Spirochaetales TAS [31,32] 
Family Spirochaetaceae TAS [30,31,33] 
Genus Spirochaeta TAS [31,34-36] 
Species Spirochaeta caldaria TAS [1,2] 
Type strain H1 TAS [1,2] 

 Gram stain negative TAS [2] 
 Cell shape spiral shaped TAS [2] 
 Motility motile TAS [2] 
 Sporulation none TAS [2] 
 Temperature range thermophile TAS [2] 
 Optimum temperature 48-52°C TAS [2] 
 Salinity <0.4% TAS [2] 
MIGS-22 Oxygen requirement obligately anaerobic TAS [2] 
 Carbon source carbohydrates TAS [2] 
 Energy metabolism chemoorganotroph TAS [2] 
MIGS-6 Habitat fresh water, hot spring TAS [2] 
MIGS-15 Biotic relationship free living TAS [2] 
MIGS-14 Pathogenicity none TAS [2] 
 Biosafety level 1 TAS [37] 
 Isolation hot spring TAS [2] 
MIGS-4 Geographic location Hunter's Hot Spring, Oregon TAS [2] 
MIGS-5 Sample collection time August 1990 NAS 
MIGS-4.1 Latitude 42.222 NAS 
MIGS-4.2 Longitude -120.368 NAS 
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); 
NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sam-
ple, but based on a generally accepted property for the species, or anecdotal evidence). Evi-
dence codes are from of the Gene Ontology project [75]. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard li-
brary, one 454 PE library (12 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 283.3 × Illumina; 26.8 × pyrosequence 

MIGS-30 Assemblers 
Newbler version 2.3, Velvet 0.7.63,  
phrap version SPS - 4.24 

MIGS-32 Gene calling method Prodigal 

 INSDC ID CP002868 

 GenBank Date of Release August 12, 2011 

 GOLD ID Gc01874 

 NCBI project ID 46527 

 Database: IMG-GEBA 2505679006 

MIGS-13 Source material identifier DSM 7334 

 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
S. caldaria strain H1T, DSM 7334, was grown an-
aerobically in DSMZ medium 635 (Spirochaeta 
caldaria medium) [42] at 50°C. DNA was isolated 
from 0.5-1 g of cell paste using MasterPure Gram-
positive DNA purification kit (Epicentre 
MGP04100) following the standard protocol as 
recommended by the manufacturer with modifica-
tion st/DL for cell lysis as described in Wu et al. 
2009 [40]. DNA is available through the DNA Bank 
Network [43]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [44]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly, consisting of 60 contigs in one scaffold, 
was converted into a phrap [45] assembly by mak-
ing fake reads from the consensus, to collect the 
read pairs in the 454 paired end library. Illumina 
GAii sequencing data (899.9 Mb) was assembled 
with Velvet [46] and the consensus sequences 
were shredded into 2.0 kb overlapped fake reads 
and assembled together with the 454 data. The 

454 draft assembly was based on 121.6 Mb 454 
draft data and all of the 454 paired end data. 
Newbler parameters are -consed -a 50 -l 350 -g -m 
-ml 20. The Phred/Phrap/Consed software pack-
age [45] was used for sequence assembly and 
quality assessment in the subsequent finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 
Software, LLC). Possible mis-assemblies were cor-
rected with gapResolution [44], Dupfinisher [46], 
or sequencing clones bridging PCR fragments with 
subcloning. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR pri-
mer walks (J.-F. Chang, unpublished). A total of 
519 additional reactions and 5 shatter libraries 
were necessary to close gaps and to raise the qual-
ity of the finished sequence. Illumina reads were 
also used to correct potential base errors and in-
crease consensus quality using a software Polisher 
developed at JGI [47]. The error rate of the com-
pleted genome sequence is less than 1 in 100,000. 
Together, the combination of the Illumina and 454 
sequencing platforms provided 310.1 × coverage 
of the genome. The final assembly contained 
285,090 pyrosequence and 24,996,639 Illumina 
reads. 
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Genome annotation 
Genes were identified using Prodigal [48] as part of 
the DOE-JGI genome annotation pipeline [24], fol-
lowed by a round of manual curation using the JGI 
GenePRIMP pipeline [49]. The predicted CDSs were 
translated and used to search the National Center for 
Biotechnology Information (NCBI) nonredundant 
database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, 
COG, and InterPro databases. Additional gene pre-
diction analysis and functional annotation was per-
formed within the Integrated Microbial Genomes - 
Expert Review (IMG-ER) platform [50]. 

Genome properties 
The genome consists of a 3,239,340 bp long chro-
mosome with a G+C content of 45.6% (Table 3 and 
Figure 3). Of the 2,928 genes predicted, 2,869 were 
protein-coding genes, and 59 RNAs; 80 pseudogenes 
were also identified. The majority of the protein-
coding genes (71.0%) were assigned a putative func-
tion while the remaining ones were annotated as 
hypothetical proteins. The distribution of genes into 
COGs functional categories is presented in Table 4. 

Insights from the genome sequence, and 
taxonomic conclusions for S. caldaria 
Comparative genomics 
To assess the composition of the completed Spiro-
chaetes type-strain genomes, we extracted the 
COG IDs from their IMG annotations [50] and de-
termined the absolute and relative numbers of 
genes present in each COG category [51]. 
Heatmaps were generated using the opm package 
[52] for the statistical environment R [53] from 
the arcsine-square root transformed (see, e.g., p. 
386 in [54] for the rationale of this transfor-
mation) COG proportions (Fig. 4) and from the 
log-transformed absolute numbers (data not 
shown). The results indicate that the relative COG 
category content mainly reflects changes in life 
style, with the intracellular parasites (Borrelia 
spp.) and the coccoid forms (Sphaerochaeta spp.) 
forming clusters of their own. 

 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 3,239,340 100.00% 

DNA coding region (bp) 2,965,950 91.56% 

DNA G+C content (bp) 1,476,358 45.58% 

Number of replicons 1  

Extrachromosomal elements 0  

Total genes 2,928 100.00% 

RNA genes 59 2.02% 

rRNA operons 3  

Protein-coding genes 2,869 97.98% 

Pseudo genes 80 2.73% 

Genes with function prediction 2,078 70.97% 

Genes in paralog clusters 1,319 45.05% 

Genes assigned to COGs 2,270 77.53% 

Genes assigned Pfam domains 2,260 77.19% 

Genes with signal peptides 527 18.00% 

Genes with transmembrane helices 762 26.02% 

CRISPR repeats 0  
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Figure 3. Graphical map of the chromosome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content (black), GC skew (purple/olive). 

 
Expectedly, the Sphaerochaeta genomes are im-
poverished with regard to category N (“Cell motili-
ty”). The genomes of the flagellated forms, howev-
er, also differ regarding their proportion of genes 
in this category. Hence, we calculated the correla-
tion between this proportion and the average 
number of flagella reported for each species in the 
literature [55] (Fig. 5, left side). The correlation 
was high (0.917) and significant (p < 10-07). The 
number of flagella obviously has a historical com-
ponent, with flagella lacking in one clade 
(Sphaerochaeta) and the number of flagella being 
particularly high in other clades (Borrelia, 

Brachyspira). To rule out a pseudocorrelation 
caused by common ancestry (see chapter in [56] 
for the background), we thus converted the data 
to phylogeny-independent contrasts using the 
CONTRASTS program available in the PHYLIP 
package [57] and the ML tree inferred from the 
16S rRNAs from the genome sequences as the un-
derlying phylogeny. The correlation between the 
contrasts was almost as high (0.818) and signifi-
cant (p < 10-05) (Fig. 5, right side). Thus, Spiro-
chaetes appear to rely on increasing their number 
of motility genes for increasing their number of 
flagella. 
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Table 4. Number of genes associated with the general COG functional categories 

Code Value %age Description 

J 158 6.3 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 156 6.2 Transcription 

L 125 5.0 Replication, recombination and repair 

B 2 0.1 Chromatin structure and dynamics 

D 33 1.3 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 40 1.6 Defense mechanisms 

T 228 9.1 Signal transduction mechanisms 

M 142 5.7 Cell wall/membrane/envelope biogenesis 

N 86 3.4 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 50 2.0 Intracellular trafficking, secretion, and vesicular transport 

O 91 3.6 Posttranslational modification, protein turnover, chaperones 

C 134 5.3 Energy production and conversion 

G 296 11.8 Carbohydrate transport and metabolism 

E 188 7.5 Amino acid transport and metabolism 

F 67 2.7 Nucleotide transport and metabolism 

H 77 3.1 Coenzyme transport and metabolism 

I 60 2.4 Lipid transport and metabolism 

P 77 3.1 Inorganic ion transport and metabolism 

Q 26 1.1 Secondary metabolites biosynthesis, transport and catabolism 

R 293 11.7 General function prediction only 

S 182 7.3 Function unknown 

- 658 22.5 Not in COGs 
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Fig. 4. Heatmap showing the distribution of transformed relative COG category counts. The rows repre-
sent the genomes, the columns the COG categories. Both rows and columns were rearranged according 
to their overall (dis-)similarities as represented by the dendrograms on the left and upper side, respective-
ly; for technical details see the opm manual [52]. 

 
Fig. 5. Scatter plots showing the relationship between the number of flagella and the proportion 
of genes in the COG category N (“Cell motility”). The left picture is based on the uncorrected 
data, whereas the right graph plots the phylogeny-independent contrast calculated from the 
numbers used in the left graph. The lines represent the corresponding linear models. For the 
magnitudes and significances of the correlations, see the main text. 
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Other relations to the life-style include the lower 
proportions of many COG categories in the re-
duced genomes of the Borrelia species, apparently 
as an adaptation to their lifestyle (the higher pro-
portion of genes in category J is simply due to the 
absolute number of genes in this category being 
held constant during genome reduction; data not 
shown), which is considered by some as parasitic, 
and symbiotic by others. The coccoid forms have 
an increased proportion of genes in category G, 
related to carbohydrate transport and metabo-
lism, but this seems not be directly linked to the 
loss of the typical spirochaete shape, as the 
Spirochaeta smaragdinae genome shows a similar-
ly high proportion of G genes (Fig. 4) and in abso-
lute terms has more genes in this category than S. 
coccoides (data not shown). The coccoid forms 
have fewer genes in the cell-wall related category 
M, but this also holds for S. smaragdinae. 

Further, there seem to be more genes in the de-
fense-related category V in the genomes of the 
host-associated but non-intracellular genera 
Brachyspira and Treponema, but there are excep-
tions to this rule, such as T. azotonutricium (Fig. 
4). In contrast to the other genera, neither 
Spirochaeta nor Treponema appear as homogene-
ous genera the COG content of their genomes, 
even if one considers that S. caldaria might be bet-
ter placed in Treponema (see below). 

Taxonomic interpretation for S. cal-
daria and neighboring species in the 
family Spirochaetaceae according to 
16S rRNA data 
Based on physiological characteristics, the G+C 
content and the comparison of 16S rRNA sequenc-
es, strain H1T was classified into the genus 
Spirochaeta [1]. S. caldaria H1T is free living, 
saccharolytic, obligate anaerobe and possess the 
ultrastructural features typical of spirochetes. S. 
caldaria differs from all other Spirochaeta species, 
with respect to its thermophilic growth tempera-
ture, with the exception of Spirochaeta 
thermophila, which has a temperature optimum 
between 66 and 68°C [1]. In contrast to the 
mesophilic Spirochaeta species, S. caldaria does 
not produce ethanol as an end-product of D-
glucose fermentation [1]. 
Based on a 16S rRNA sequence comparison, S. cal-
daria as well as Spirochaeta zuelzerae and 
Spirochaeta stenostrepta are more closely related 

to species of Treponema (Fig. 1). To rule out the 
possibility that the discrepancies between 16S 
rRNA data and taxonomic classification were not 
caused by either a mix-up or contamination of cul-
tures, we cross-compared the 16S rRNA sequenc-
es deposited in INSDC for S. caldaria (EU580141 
and M71240 in addition to the herein published 
whole genome sequence), S. stenostrepta 
(AB541984, FR733664, and M88724) and S. 
zuelzerae (FR749928, FR749929 and M88725), 
respectively. Besides poor sequence quality to-
wards the ends of some sequence deposits, differ-
ences between accessions annotated as originat-
ing from the same species were not apparent. 

The 16S rRNA data and the taxonomic classifica-
tion of Spirochaetaceae are in significant conflict 
with each other. This problem has already been 
addressed in detail in one of the previous reports 
of the GEBA series [19]. The analysis shown in 
[19] used the classification as phylogenetic con-
straint, paired-site tests [56] to assess the signifi-
cance of the differences between the resulting 
trees, and the ParaFit tests to determine the leaves 
of the trees that cause these differences [58]. One 
of the consequences of the earlier study was the 
assignment of Spirochaeta coccoides to 
Sphaerochaeta (compare Fig. 1 with Fig. 5 below). 
We here focus on our current target species, S. 
caldaria, and comparably problematic taxa. 

Phylogenomic analyses 
According to the results from 16S rRNA analysis 
(Fig. 1) a comparative analysis the genome se-
quences of Spirochaeta africana (GenBank 
CP003282) and Treponema primitia (GenBank 
CP001843) were performed. The genomes of the 
sequenced Spirochaeta species and T. primitia dif-
fer significantly in their size. Compared to the ge-
nome of T. primitia (4.1 Mb, 3,579 protein-coding 
genes) the genomes of S. caldaria (3.2 Mb, 2,928 
protein coding genes), and S. africana (3.3 Mb, 
3,874 protein-coding genes) are smaller in size. 
An estimate of the overall similarity among S. cal-
daria, S. africana and T. primitia was computed 
with the Genome-to-Genome Distance Calculator 
(GGDC) [59,60]. This system calculates the dis-
tances by comparing the genomes to obtain HSPs 
(high-scoring segment pairs) and inferring dis-
tances from the set of formulas (1, HSP length / 
total length; 2, identities / HSP length; 3, identities 
/ total length). Table 5 shows the results of the 
pairwise comparison. 
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The comparison of S. caldaria with T. primitia 
yielded the highest scores, 6.04% of the average of 
genome length are covered with HSPs. The identi-
ty within the HSPs was 81.92%, whereas the iden-
tity over the whole genome was 4.95%. Lower 
similarity scores were observed in the comparison 
of S. caldaria with S. africana in which only 1.62% 
of the average of both genome lengths are covered 
with HSPs. The identity within these HSPs was 
84.5%, whereas the identity over the whole ge-
nome was only 1.37%. 

As expected, those distances relating HSP cover-
age (formula 1) and number of identical base pairs 
within HSPs to total genome length (formula 3) 
are higher between S. caldaria and T. primitia than 
between S. caldaria and S. africana. That the dis-
tances relating the number of identical base pairs 
to total HSP length (formula 2) behave differently 
indicates that the genomic similarities between S. 
caldaria and S. africana are limited to more con-
served sequences, a kind of saturation phenome-
non [59]. 

Phenotypic data and taxonomic interpretation 
Table 6 presents an overview of key morphologi-
cal and physiological features of S. caldaria, S. 
zuelzerae and S. stenostrepta compared with the 
genus descriptions of Spirochaeta and Treponema. 
The genus descriptions of Spirochaeta and 
Treponema evolved during the decades, and be-
came less restrictive and differentiating. This 
makes a correct diagnosis of the genera within the 
family Spirochaetaceae difficult. In 2010, Leschine 
and Paster listed characteristics for the differenti-
ation of the genus Spirochaeta from other genera 

of spirochetes [65]. In contrast to the genus 
Treponema, members of the genus Spirochaeta are 
free-living and cannot use amino acids as energy 
source. S. caldaria, S. zuelzerae and S. stenostrepta 
have both characteristics (Table 6), but based on 
16S rRNA comparison these three Spirochaeta 
spp. are more closely related to species of 
Treponema [65]. The utilization of amino acids is 
not a restrictive criterion as some Treponema spe-
cies also lack the ability to use amino acids as an 
energy source (T. bryantii [66], T. parvum [67], T. 
pectinovorum [68] and T. porcinum [69]). As a 
consequence of the existence of free-living species 
of Spirochaeta, which are more closely related to 
species of Treponema, Leschine and Paster suggest 
that “free-living“ vs. “host-associated” may not be 
a reliable taxonomic criterion to differentiate spe-
cies of Spirochaeta and Treponema [65]. 

Spirochaeta zuelzerae was originally described by 
Veldkamp in 1960 [62] as “Treponema zuelzerae”. 
Based on existing classification key at the time 
[70], Veldkamp placed his spirochete, on the basis 
of its cell length to the Spirochaetaceae and in its 
serological similarity to the genus Treponema, into 
the family “Treponemaceae”. Canale-Parola et al. 
1968 criticized the classification based on cell 
length, as the size can vary depending on the 
growth phase of the culture [25]. Because of the 
similarity between Veldkamp’s spirochete and 
other species of Spirochaeta Canale-Parola et al. 
(1968) suggested that T. zuelzerae should be in-
cluded in the genus Spirochaeta, as Spirochaeta 
zuelzerae. Thus the name S. zuelzerae was revived 
and validly published [71].  

Table 5. Pairwise comparison of S. caldaria with S. africana and T. primitia using the GGDC-
Genome-to-Genome Distance Calculator. 

  
HSP length / 

total length [%] 
identities / 

HSP length [%] 
identities / 

total length [%] 

S. caldaria S. africana 1.62 84.50 1.37 

S. caldaria T. primitia 6.04 81.92 4.95 

T. primitia S. africana 1.34 83.99 1.12 
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Amino-acid sequences from 16 Spirochaetaceae 
and outgroups (other Spirochaetes families) com-
pleted type-strain genomes were retrieved from 
INSDC and used in a phylogenomic analysis of the 
group, as described previously [19,61]. One of the 
previous taxonomic consequences for the genus 
Spirochaeta was the assignment of S. coccoides to 
the genus Sphaerochaeta [19]. Here the gene-
content phylogeny from the previously conducted 
analyses is depicted together with the bootstrap 
support values from all four applied approaches 
(Fig. 6). 

All phylogenomic methods  support the sister-
group relationship of S. caldaria and two 
Treponema species, T. azotonutricium and T. 
primitia (88-100%). These methods corroborate 
the results of the 16S rRNA analysis that 
Treponema is paraphyletic. It was previously con-
cluded that taxonomic revisions were necessary 
[19]. Here we revisit the definitions of Spirochaeta 
and Treponema and formally propose a number of 

revisions and emendations to solve these prob-
lems. 

Apparently the phenotypic definitions of both 
genera are vague and non-differential. The range 
of the features expressed as continuous numbers 
(cell size, GC content) numerically overlap, and the 
ranges of the other, discrete features logically 
overlap. Even the biotic relationships are ex-
pressed merely as a tendency, with Treponema 
assumed to be “primarily host-associated”; a crite-
rion that has been questioned earlier [65]. S. 
stenostrepta and S. zuelzerae do not fit the descrip-
tion of Treponema, and only with regard to a sin-
gle character, the GC content, which can hardly 
outweigh the phylogenetic evidence presented in 
Fig. 1, Fig. 6 and [19]. As far as this can be inferred 
from the distribution of relative COG counts (Fig. 
4), genomic data make it unlikely that physiologi-
cal characteristics can be found to differentiate 
between Spirochaeta and Treponema. 

 

 
Figure 6. Phylogenetic tree inferred from completely sequenced genomes of the Spirochaeta type strains. The tree 
was inferred from 11,131 gene-content characters under the maximum likelihood (ML) criterion and rooted with 
Leptospira. The branches are scaled in terms of the expected number of substitutions per site. Numbers above the 
branches are bootstrapping support values (if larger than 60%) from (i) maximum-likelihood gene-content analysis; 
(ii) maximum-parsimony gene-content analysis; (iii) maximum-likelihood supermatrix analysis; (iv) maximum-
parsimony supermatrix analysis. For further details see [19]. 
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Table 6. Typical features of reference taxa compared to the three Spirochaeta species placed within Treponema. 

 S. caldaria [1] 
S. zuelzerae 
[62] 

S. stenostrepta 
[63] 

Genus 
Spirochaeta 
[31,34-36,55] 

Genus Treponema 
[55,64] 

Cell shape helical helical helical 

helical; spherical 
bodies under  
unfavorable 
growth condi-
tions 

helical; spherical 
bodies under  
unfavorable 
growth conditions 

Pathogenic-
ity 

non pathogenic non pathogenic non pathogenic non pathogenic 
some species are 
pathogenic 

Biotic  
relationship free living free living free living free living 

primarily  
host-associated 

Size [µm]  0.2-0.3 by 15-45 
0.2-0.35 by 8-
16 0.2-0.3 by 15-45 

0.2-0.75 by 5-
250 0.1-0.7 by 5-20 

Motility motile motile motile motile motile 

Flagellation flagella 1-2-1 flagella 1-2-1 
2 periplasmic  
flagella 

2 periplasmic  
flagella (excep-
tion: S. plicatillis, 
which has many 
flagella) 

one or more 
periplasmic flagel-
la 

Relationship 
to O2 

obligately anaer-
obe 

obligately 
 anaerobe 

obligately  
anaerobe 

obligately  
anaerobe or 
facultatively  
anaerobe 

obligately anaer-
obe or 
microaerophilic 

Utilizes 
carbohydrates, 
no amino acids 

carbohydrates carbohydrates 
a variety of  
carbohydrates, 
no amino acids 

carbohydrates or 
amino acids 

Fermenta-
tion  
products 

acetate, lactate, 
CO2, H2 

acetate, lactate, 
CO2, H2 

acetate, ethanol, 
CO2, H2, (lactate) 

acetate, ethanol, 
CO2, H2 

 

G+C con-
tent 
[mol%] 

46 56 60 
51-65 [35] 
44-65 [34] 

37-54 

 
On the basis of the phylogenetic evidence present-
ed above (Fig. 1, Fig. 6) and in [19], the reclassifi-
cation of S. caldaria, S. stenostrepta and S. 
zuelzerae into the genus Treponema is proposed. 
This also makes emendation of the genus neces-
sary, as the current description excludes a small 
number of features found in these three species. 
Our proposal is based on two principles, (i) that all 
taxa should be monophyletic (or, more precisely, 
no taxon should be demonstrably non-
monophyletic) [39,42,72,73] and (ii) that as few 
taxonomic changes should be conducted as possi-
ble. The second principle rules out the alternative 
solution to merge both genera (which would then 

also make the inclusion of Sphaerochaeta and per-
haps Borrelia necessary). 

Emended description of the genus Treponema 
Schaudinn 1905 emend. Smibert 1974 (Ap-
proved Lists 1980) 
The description of the genus Treponema is the one 
given by Norris et al. [74], with the following mod-
ification. 
The GC content is between 37 and 60 mol%. The 
biotic relationship is either host associated or free 
living. 
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Description of Treponema caldaria 
(Pohlschroeder et al. 1994) Abt, Göker and 
Klenk, comb. nov. 
Basonym: Spirochaeta caldaria Pohlschroeder et 
al. 1994. 
The characteristics of the species are given in the 
species description by Pohlschroeder et al. 1994 
[1]. 
The type strain is H1T (= DSM 7334 = ATCC 
51460). 

Description of Treponema stenostrepta 
(Zuelzer et al. 1912) Abt, Göker and Klenk, 
comb. nov. 
Basonym: Spirochaeta stenostrepta (Zuelzer et al. 
1912) 
The characteristics of the species are given in the 
species description by Zuelzer et al. 1912 [63]. 

The type strain is Z1T (= DSM 2028 = ATCC 
25083). 

Description of Treponema zuelzerae 
(Canale-Parola 1980) Abt, Göker and Klenk, 
comb. nov. 
Basonym: Spirochaeta zuelzerae (ex Veldkamp 
1960) Canale-Parola 1980, 
This species was originally described by 
Veldkamp 1960 as “Treponema zuelzerae” [62] but 
that name did not appear on the Approved Lists. 
The name was subsequently revived and validly 
published as Spirochaeta zuelzerae [25,71]. 
The characteristics of the species are given in the 
species description by Veldkamp 1960 [62]. The 
type strain is ATCC 19044 (= DSM 1903). 
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