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Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, 
facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class 
Gammaproteobacteria, and has the capability of residing in the human gallbladder by form-
ing a biofilm and hence causing the person to become a typhoid carrier. Here we present the 
complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, 
which was isolated from a chronic carrier in Varanasi, India. The complete genome compris-
es a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes 
and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to 
Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain 
CT18, although their genome structure is slightly different. 

Abbreviations: NCBI- National Center for Biotechnology Information, RDP- Ribosomal Data-
base Project 

Introduction 
Salmonella enterica serovar Typhi is a particular 
Salmonella serovar that causes typhoid fever [1-
3]. There are an estimated 20 million cases of ty-
phoid fever and 200,000 deaths from this disease 
reported each year, worldwide [4,5]. S. enterica 
serovar Typhi belongs to the family Entero-
bacteriaceae. All Enterobacteriaceae ferment glu-
cose, reduce nitrates, and are oxidatively negative 
[6]. In general, S. enterica serovar Typhi is motile, 
produces minimal H2S, and is resistant to bile ac-
ids [7]. S. enterica serovar Typhi has three types of 
antigens [3], namely the H antigen for motility, 
specific O antigen for synthesizing lipopolysaccha-
rides and biofilm formation, and Vi antigen which 
is a capsular polysaccharide that acts as a major 
virulence factor. This Vi antigen is only specific for 
S. enterica serovar Typhi and is found in Salmonel-
la Pathogenicity Island-7 [8]. In 2003, comparative 
genomics of S. enterica serovar Typhi strains Ty2 
and CT18 was carried out by Deng et al. [9]. In that 

study, a half-genome interreplichore inversion in 
Ty2 relative to CT18 was discovered. It was re-
ported that S. enterica serovar Typhi Ty2 does not 
harbor any plasmid and hence it is susceptible to 
antibiotics. On the other hand, S. enterica serovar 
Typhi CT18 carries two plasmids with one confer-
ring multidrug resistance. We published the com-
plete genome sequence of S. enterica serovar 
Typhi P-stx-12 earlier last year [10]. This sequenc-
ing project helps us to better understand the ge-
nome organization and the contribution of the 
virulence machinery in this pathogen. Here we 
present a summary of S. enterica serovar Typhi P-
stx-12 and its unique features, together with the 
description of the complete genomic sequencing 
and annotation. 
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Classification and features 
S. enterica serovar Typhi P-stx-12 was isolated 
from a typhoid carrier in Northern India, Uttar Pra-
desh, Varanasi in 2009. This serotype is known to 
inhabit the Peyer’s patches (lymph node) of the 
small intestine, liver, spleen, bone marrow, bile, 
and blood stream of infected humans. 
Cells of S. enterica serovar Typhi P-stx-12 were 
Gram-negative, motile, rod-shaped, and non-spore 
forming. This strain grew at an optimum tempera-
ture of 35°C-37°C, but could tolerate temperatures 
between 7°C and 45°C. Strain P-stx-12 is a faculta-
tive anaerobe and utilizes glucose as the main car-
bon source. The pure isolate did not produce cyto-
chrome oxidase but was able to reduce nitrate and 
break down glucose by pathways for oxidation and 
fermentation.  This strain did not produce urease. 
In Triple Sugar Iron medium, there was an alka-
line/acid reaction with a very small amount of H2S 
production. Indole was not produced in peptone 
water. The strain was able to ferment glucose and 
mannitol without production of gas; however lac-
tose and sucrose were not fermented. The strain 
could be agglutinated by poly O, poly H, factors O9, 
H-d, and Vi antisera (data not shown). 

Figure 1 shows the phylogenetic neighborhood of S. 
enterica serovar Typhi P-stx-12 in a 16S rRNA 
based tree. There were seven 16S rRNA gene cop-
ies in the genome of S. enterica serovar Typhi P-stx-
12. Two out of the seven copies differed from the 
rest by having a single base substitution (G to A). 
Thus, the common gene copy was used for tree 
building. In relation to others in the genus Salmo-
nella, strain P-stx-12 is closely related to S. enterica 
serovar Typhi strain Ty2 and S. enterica serovar 
Typhi strain CT18. The classification and features 
of this organism are summarized in Table 1. 

Genome sequencing and annotation 
Genome project history 
S. enterica serovar Typhi P-stx-12 was selected for 
sequencing because it was isolated from a typhoid 
carrier in India, where there is a high rate of ty-
phoid fever cases. This isolate was obtained from 
a 32-year old male who had been showing persis-
tent high titers for Widal test and Vi antibody for 
more than one year. DNA isolation was carried out 
at Banaras Hindu University. This genome se-
quence was first published in April 2013 [10]. A 
summary of the project information is shown in 
Table 2. 

 
Figure 1. Phylogenetic tree highlighting the position of Salmonella enterica serovar Typhi strain P-stx-12 rela-
tive to other strains within the Enterobacteriaceae. Strains shown are those within the Enterobacteriaceae hav-
ing corresponding GenBank accession numbers. The phylogenetic tree was constructed using Ribosomal Da-
tabase Project [11] tree builder that utilizes the Weighbor weighted neighbor-joining tree building algorithm 
[12]. The bootstrap value was 100. Escherichia coli strain Z83205 was used as an outgroup. 
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Table 1. Classification and general features of S. enterica serovar Typhi P-stx-12 
MIGS ID Property Term Evidence codea 

  Domain Bacteria TAS [13] 

  Phylum Proteobacteria TAS [14] 

  Class Gammaproteobacteria TAS [15,16] 

 Current classification Order Enterobacteriales TAS [17] 

  Family Enterobacteriaceae TAS [18-20] 

  Genus Salmonella TAS [18,21-23] 

  Species Salmonella enterica TAS [23,24] 

  Subspecies Salmonella enterica enterica TAS [23,24] 

 Gram stain negative TAS [6] 

 Cell shape Rod-shape TAS [6] 

 Motility Motile TAS [6] 

 Sporulation Non-spore forming TAS [6] 

 Temperature range 7oC-45oC TAS [6] 

 Optimum temperature 35oC-37oC TAS [6] 

 Carbon source Carbohydrates (glucose) TAS [6] 

 Energy source Chemoorganotrophic TAS [6] 

 Terminal electron receptor Not reported  

MIGS-6 Habitat 
Multi-organ pathogen that inhabits the 
Peyer’s patches (Lymph node) of the small 
intestine, liver, spleen, bone marrow, bile 
and blood stream of infected human. 

NAS 

MIGS-6.3 Salinity Survives for days at 0.85% NaCl. NAS 

MIGS-22 Oxygen Facultative anaerobe TAS [6] 

MIGS-15 Biotic relationship Human restricted NAS 

MIGS-14 Pathogenicity Pathogenic TAS [25,26] 

MIGS-4 Geographic location Uttar Pradesh, Varanasi, India IDA 

MIGS-5 Sample collection time November 2009 IDA 

MIGS-4.1  Latitude 25° 19' 60 N IDA 

MIGS-4.2 Longitude 83° 0' 0 E IDA 

MIGS-4.3 Depth Not reported  

MIGS-4.4 Altitude 76 (meters) IDA 

a) Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report 
exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, iso-
lated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evi-
dence codes are from the Gene Ontology project [27]. If the evidence code is IDA, then the property was di-
rectly observed for a living isolate by one of the authors or an expert mentioned in the acknowledgements. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used One 454 paired-end library (4-kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GA IIx, 454 GS FLX Titanium 

MIGS-31.2 Fold coverage 100× Illumina, 18×, pyrosequencing 

MIGS-30 Assemblers Newbler, Burrows-Wheeler Alignment 

MIGS-32 Gene calling method Glimmer, RNAmmer, tRNAscan-SE 

 
Genbank ID CP003278 (Chromosome) 

CP003279 (Plasmid) 

 Genbank Date of Release February 1, 2012 

 Project relevance Biotechnology, Pathway, Pathogenic 

Growth conditions and DNA isolation 
The stool specimen of strain P-stx-12 was collect-
ed from a known chronic typhoid carrier patient. 
For the isolation of the bacterium, 5 gm of freshly 
passed unpreserved stool was sieved through a 
gauze piece to remove the coarse particles. The 
filtrate was centrifuged at 4,000 rpm for 5 min. 
The pellet was washed twice with Phosphate Buff-
ered Saline, pH 7.2 and suspended in selenite F 
broth (50 ml) for enrichment with some modified 
technique (under process of patenting). After 
overnight incubation, the broth was examined for 
turbidity and subcultured on deoxycholate citrate 
agar and MacConkey agar. 
Extraction of genomic DNA was carried out using 
a Phenol-Chloroform and Proteinase K method 
with some modification [28]. The DNA prepara-
tion was checked by PCR amplification of the 
flagellin (fliC) gene of S. enterica serovar Typhi 
[29,30] and 16S rRNA gene [31]. 

Genome sequencing and assembly 
Whole-genome sequencing was performed with a 
combined strategy of 454 and Illumina sequencing 
technologies. A 4-kb paired-end library was con-
structed according to the manufacturer’s instruc-
tions (454). A total of 242,499 reads were generat-
ed using the GS FLX Titanium system, giving ~18× 
coverage of the genome. Initial assembly of 97.09% 
of the reads using the Newbler assembler (Roche) 
resulted in ~200 large contigs within 11 scaffolds. 
A total of ~500 Mb of 3-kb mate-pair sequencing 
data were generated to reach a depth of 100× cov-
erage with an Illumina GA IIx. These sequences 
were mapped to the scaffolds using the Burrows-

Wheeler Alignment (BWA) tool [32]. A majority of 
the gaps within the scaffolds were filled by local 
assembly of 454 and Illumina reads. The remaining 
gaps were filled by sequencing the PCR products of 
the gaps using an ABI 3730xl capillary sequencer. 
The putative sequencing errors were verified by 
the coverage of 454 and Illumina reads. 

Genome annotation 
Annotation of the S. enterica serovar Typhi P-stx-12 
genome was done using a combination of ISGA (In-
tegrative Services for Genomic Analysis) [33] and 
the DIYA (Do-It-Yourself Annotator) pipeline [34], 
which comprises of Glimmer [35], tRNAscan-SE 
[36], RNAmmer [37], BLAST [38], and Asgard [39]. 
RPS-BLAST searches against the Clusters of Orthol-
ogous Groups (COG) database enabled assignment 
of COG functional categories to the ORFs. CLC Ge-
nomics Workbench was used to further improve 
and check the annotation results. Frameshifts and 
partial gene fragments that indicate potential 
pseudogenes were identified by the NCBI Submis-
sion Check tool and manually verified. Protein cod-
ing genes were searched against the NCBI RefSeq 
database using BLASTP [40]. Clustered Regularly 
Interspersed Short Palindromic Repeats (CRISPR) 
regions were identified using the CRISPR Finder 
program [41]. PHAST (PHAge Search Tool) [42] 
was used to search for prophage sequences within 
the genome. Potential genomic islands were identi-
fied using the IslandViewer web server [43]. Com-
parison between different S. enterica serovar Typhi 
strains was done using progressiveMauve [44]. 
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Genome properties 
The complete genome of S. enterica serovar Typhi 
P-stx-12 contains a single circular chromosome of 
4,768,352 bp with a GC content of 52.1%, and a 
circular plasmid of 181,431 bp with a GC content 
of 46.4% (Figure 2 and Figure 3). The chromo-
some consists of 4,885 predicted genes, of which 
there are 4,691 protein-coding genes, 22 rRNA 
genes, and 76 tRNA genes. Specific COGs were as-
signed to 75.34% of the genes in the chromosome, 
and 25% of these genes were also assigned with 
enzyme classification numbers which were in-
volved in 268 metabolic pathways. The properties 
and statistics of the genome are summarized in 
Tables 3 and 4. The plasmid harbors 234 protein-
coding genes, with 187 annotated as hypothetical 
proteins with unknown function. The remaining 
genes were grouped into specific COGs, the major-
ity of which fell into the category of information 
storage and processing with respect to replication, 
recombination and repair. 

Paralog clusters 
In order to identify paralog families, BLASTP was 
used to calculate all possible protein homologs in 
the S. enterica serovar Typhi P-stx-12 genome. 
Homologs that had at least 30% shared amino acid 
similarity were selected. Paralog pairs were im-
ported into the S. enterica serovar Typhi P-stx-12 
database in Pathway Studio as a new type of in-
teraction called “Paralog” [46]. Protein functional 
families were identified as clusters in the global 
Paralog network using the direct force layout al-
gorithm. The biological function was assigned to 
each paralog cluster based on the functional anno-
tation of the protein (Figure 4). The major paralog 
clusters identified include ATPase components 
that are mainly involved in transport systems, 
transcriptional regulator, transcriptional re-
pressor, transposases, major facilitator superfami-
ly permeases, response-regulator containing 
CheY-like receiver domain and an HTH DNA bind-
ing domain, P-pilus assembly proteins, multidrug 
efflux system proteins, and fimbrial-like adhesins. 

Table 3. Genome statistics 
Attribute Value % of totala 

Genome size (bp) 4,768,352 100.00 

DNA coding region (bp) 4,018,014 84.26 

DNA G+C content (bp) 2,484,311 52.10 

Total genesb 4,885 100.00 

RNA genes 98 2.00 

Protein-coding genes 4,691 96.03 

Pseudogenes 96 1.97 

Genes in paralog clusters 623 13.28 

Genes assigned to COGs 3,534 75.34 

Genes with signal peptides 388 8.27 

Genes with transmembrane helices 1,096 23.36 

CRISPR repeat 1  

a) The total is based on either the size of the genome in base pairs 
or the total number of protein coding genes in the annotated ge-
nome. 

b) Also includes 96 pseudogenes 
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Figure 2. Circular map of the Salmonella enterica serovar Typhi P-stx-12 chromosome. From the inside to outside, the 
first and second circles show GC skew and G+C content respectively. The third circle shows the CDS, tRNA and 
rRNA in the reverse strand; the fourth circle shows the CDS, tRNA, rRNA in the forward strand. This figure was gener-
ated by CGView [45]. 

Insights into the genome 
Comparisons with other fully sequenced S. 
enterica serovar Typhi genomes 
The genome of S. enterica serovar Typhi P-stx-12 
was compared with the other two published S. 
enterica serovar Typhi genomes, CT18 (isolated 
from Vietnam) and Ty2 (isolated from Russia). 
Comparison between these three genomes re-
vealed that the coding genes of S. enterica 
serovar Typhi P-stx-12 were 84% similar to 
those of CT18 [47] and Ty2 [9]. The genome or-
ganization of these three strains is shown in Fig-
ure 5. The location of the genes in strains P-stx-
12 and Ty2 are identical. Both have three blocks 
of genes that are inverted from strain CT18. Our 
observations are in agreement with the work of 

Deng et al. [9], where they discovered that half of 
the Ty2 genome was inverted relative to the 
CT18 genome. Nevertheless, most of the genes 
have the same function, indicating that these are 
the possible housekeeping genes which maintain 
the survival of this pathogen. Besides that, this P-
stx-12 strain has one plasmid which shares 169 
orthologous CDSs with pHCM1, the plasmid be-
longing to CT18 (Genbank accession number 
AL513383). pHCM1 is a conjugative plasmid 
which encodes resistance to antimicrobial agents 
and heavy metals; similar to IncHI plasmid R27. 
This further supports the hypothesis that the 
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presence of a plasmid signifies a dynamic link 
between resistance and pathogenicity. Indeed, it 
was reported that the stable maintenance of 
IncHI1 plasmids in S. enterica serovar Typhi oc-
curred throughout the development of antibiotic 
resistance in S. enterica serovar Typhi [48]. It is 
worth noting that the plasmid of P-stx-12 carries 
genes encoding the tetracycline resistance pro-
tein and tetracycline repressor protein TetR, 
possibly conferring drug resistance to this strain. 
This resistance protein is also found in strain 
CT18. On the other hand, the number of 
pseudogenes in this genome appears to be only 
96, which is less than those in S. enterica serovar 
Typhi CT18 and S. enterica serovar Typhi Ty2 (> 
200). 

Genomic Islands (GIs) and Salmonella Path-
ogenicity Island (SPIs) 
There are 31 possible genomic islands (GIs) as 
predicted by IslandViewer (Figure 6). Analysis of 
these GIs revealed that most of the genes within 
the islands encode for hypothetical proteins. 
Eight Salmonella Pathogenicity Islands (SPI-11, 
SPI-2, SPI-16, SPI-6, SPI-8, SPI-4, SPI-7 and SPI-
10) were found to be embedded in these GIs, 
whereas the rest of the SPIs spanned between 
the GIs. Interestingly, the proteins found in SPI-8 
are located next to the proteins of SPI-13, which 
is not classified as one of the predicted GIs. Three 
GIs within the coordinate 4,376,723 to 4,508,803 
make up the total region for SPI-7. 

 
Figure 3. Circular map of the Salmonella enterica serovar Typhi P-stx-12 plasmid. From the inside to outside, the 
first and second circles show GC skew and G+C content respectively. The third circle shows the CDS, tRNA and 
rRNA in the reverse strand; the fourth circle shows the CDS, tRNA, rRNA in the forward strand. This figure was 
generated by CGView [45]. 
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Table 4. Number of genes associated with the 25 general COG functional categories 

Code Value %agea Description 

J 182 3.9 Translation 

A 1 0.0 RNA processing and modification 

K 307 6.5 Transcription 

L 191 4.1 Replication, recombination and repair 

B 0 0.0 Chromatin structure and dynamics 

D 33 0.7 Cell cycle control, mitosis and meiosis 

Y 0 0.0 Nuclear structure 

V 48 1.0 Defense mechanisms 

T 181 3.9 Signal transduction mechanisms 

M 246 5.2 Cell wall/membrane biogenesis 

N 122 2.6 Cell motility 

Z 0 0.0 Cytoskeleton 

W 1 0.0 Extracellular structures 

U 139 3.0 Intracellular trafficking and secretion 

O 156 3.3 Posttranslational modification, protein turnover, chaperones 

C 262 5.6 Energy production and conversion 

G 352 7.5 Carbohydrate transport and metabolism 

E 349 7.4 Amino acid transport and metabolism 

F 89 1.9 Nucleotide transport and metabolism 

H 176 3.8 Coenzyme transport and metabolism 

I 85 1.8 Lipid transport and metabolism 

P 193 4.1 Inorganic ion transport and metabolism 

Q 65 1.4 Secondary metabolites biosynthesis, transport and catabolism 

R 421 9.0 General function prediction only 

S 355 0.1 Function unknown 

- 1157 24.7 Not in COGs 

a) The total is based on the total number of protein coding genes in the annotated genome. 



Ong et al. 

http://standardsingenomics.org 491 

 
Figure 4. Paralog network of functional families in the S. enterica serovar Typhi P-stx-12 genome. 

 
A comparison between the SPIs found in strains 
CT18 and P-stx-12 revealed that the location of 
several SPIs in both genomes is different (Figure 
7). Indeed, the orientation for SPI-6, SPI-16, SPI-5, 
SPI-18, SPI-2, SPI-11, SPI-12, and SPI-17 was in-
verted in both genomes. These SPIs fall within the 
inverted genomic regions shown in Figure 5. 

Prophage Regions 
Prophage are one of the diverse mobile genetic 
elements that are acquired through horizontal 

gene transfer. These prophage genes are involved 
in lysogenic conversion. PHAST (PHAge Search 
Tool) was used to identify the prophage regions of 
S. enterica serovar Typhi P-stx-12. Based on the 
analysis, five predicted prophage regions (three 
intact, two partial) were identified in the genome. 
The three intact prophage regions have the size of 
44.2 kb, 50.8kb, and 68.2 kb, respectively. These 
regions consist of a total of 165 coding sequences 
for the phages phage_Gifsy_2 and Entero-
bacteria_phage_Fels2. In comparison, S. enterica 

http://standardsingenomics.org/�
http://dx.doi.org/10.1601/nm.11017�
http://dx.doi.org/10.1601/nm.11017�
http://dx.doi.org/10.1601/nm.11017�


S. enterica enterica sv. Typhi P-stx-12 

492 Standards in Genomic Sciences 

serovar Typhi CT18 and S. enterica serovar Typhi 
Ty2 each have eight predicted prophage regions. 
Out of the eight regions, only four intact regions 
(247 proteins) were found in S. enterica serovar 
Typhi CT18 whereas three intact regions (170 
proteins) were found in S. enterica serovar Typhi 
Ty2. The phage regions of S. enterica serovar 
Typhi P-stx-12 are the same types as those found 
in S. enterica serovar Typhi Ty2, while S. enterica 
serovar Typhi CT18 carries an additional phage 
region of the Enterobacteria_phage_SfV type. A 
summary of the prophage regions in each genome 
is shown in Table 5. 

CRISPR Region 
By using the CRISPR Finder tool, one CRISPR re-
peat region with a length of 394 bp was identified 
in the S. enterica serovar Typhi P-stx-12 genome. 
The CRISPR region starts at the position 2,900,675 
and ends at the position 2,901,069 with 6 spacers 
in between. The confirmed CRISPR has the follow-
ing direct repeat consensus sequence: 

CGGTTTATCCCCGCTGGCGCGGGGAACAC. Strains 
CT18 and Ty2 also have a single CRISPR repeat 
region with the lengths of 385 bp and 394 bp, re-
spectively. The location for the CRISPR region of 
all three strains falls within the region of 2.9 Mbp 
on the chromosome. All the strains have 6 spacers 
and share the common direct repeat consensus 
sequence. It is worth noting that the CRISPR re-
gion, including the length and the spacer se-
quence, of S. enterica serovar Typhi P-stx-12 is 
exactly identical to S. enterica serovar Typhi Ty2. 
It suggests a strong evidence of their evolutionary 
relevance and shows that the CRISPR region in S. 
enterica serovar Typhi is conserved. As CRISPRs 
function as a prokaryotic immune system and con-
fer resistance towards plasmids and phages (thus 
interfering with the spread of antibiotic resistance 
and virulence factors), it is reasonable to find only 
one CRISPR with very few spacers in this patho-
gen as compared to other bacterial strains that are 
not pathogenic [49]. 

 

 
Figure 5. Alignment of the S. enterica serovar Typhi CT18, S. enterica serovar Typhi P-stx-12, and S. enterica serovar 
Typhi Ty2 genomes using progressive Mauve [44]. Colored blocks in the first genome are connected by lines to simi-
lar colored blocks in the second and third genomes. Inverted regions in S. enterica serovar Typhi P-stx-12 and S. 
enterica serovar Typhi Ty2 are presented as blocks below the  center line of the genome. Lines indicate regions in 
each genome that are homologous. 
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Figure 6. Genomic islands as predicted using IslandViewer. Predicted genomic islands are colored within the 
circular image based on the tool IslandPath-DIMOB, SIGI-HMM, IslandPick, and an integration of the three 
tools. 

 
Figure 7. Distribution of SPIs in S. enterica serovar Typhi CT18 and S. enterica serovar Typhi P-stx-12. 
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Table 5. Prophage regions identified in S. enterica serovar Typhi P-stx-12, S. enterica serovar Typhi CT18, and S. 
enterica serovar Typhi Ty2 
Organism Region length # CDS Region Position Phage %GC 

S. enterica serovar 
Typhi P-stx-12 

44.2 kb 59 
1924908-
1969179 

Phage_Gifsy_2 50.35 

50.8 kb 49 
3478537-
3529349 

Enterobacteria_phage_Fels2 52.21 

68.2 kb 57 
4424417-
4492645 

Enterobacteria_phage_Fels2 50.07 

      

S. enterica serovar 
Typhi CT18 

44.3 kb 64 
1008698-
1053060 

Phage_Gifsy_2 50.19 

59.7 kb 74 
1879760-
1939495 

Enterobacteria_phage_SfV 48.12 

50.8 kb 49 
3504242-
3555052 

Enterobacteria_phage_Fels2 52.21 

48.1 kb 60 
4459144-
4507270 

Enterobacteria_phage_Fels2 51.15 

      

S. enterica serovar 
Typhi Ty2 

44.2 kb 63 
1928058-
1972330 

Phage_Gifsy_2 50.35 

50.8 kb 48 
3489900-
3540712 

Enterobacteria_phage_Fels2 52.20 

45.1 kb 59 
4446021-
4491188 

Enterobacteria_phage_Fels2 51.36 
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