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Bradyrhizob ium sp. strain WSM1417 is an aerobic, motile, Gram-negative, non-spore-
forming rod that was isolated from an effective nitrogen (N2) fixing  root nodule of Lupinus sp. 
collected in Papudo, Chile, in 1995. However, this microsymbiont is a poorly effective N2 
fixer with the legume host Lup inus angustifolius L.; a lupin species of considerable economic 
importance in both Chile and Australia. The symbiosis formed with L. angustifolius produces 
less than half of the dry matter achieved by the symbioses with commercial inoculant strains 
such as Bradyrhizob ium sp. strain WSM471. Therefore, WSM1417 is an important candidate 
strain with which to investigate the genetics of effective N2 fixation in the lupin-bradyrhizobia 
symbioses. Here we describe the features of Bradyrhizob ium sp. strain WSM1417, together 
with genome sequence information and annotation. The 8,048,963 bp high-quality-draft ge-
nome is arranged in a single scaffold of 2 contigs, contains 7,695 protein-coding genes and 
77 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the 
DOE Joint Genome Institute 2010 Community Sequencing  Program. 

Introduction 
The Fabaceae plant family is the third largest 
family of flowering plants with a unique ecological 
role in nitrogen (N2) fixation. This family encom-
passes the three subfamilies Caesalpinioideae, 
Mimosoideae, and Faboideae (or Papilionoideae). 
The legume genus Lupinus (commonly known as 
lupin) consists of around 280 species classified 
within the Genisteae tribe of the subfamily 
Faboideae with major centers of diversity in South 
and Western North America, the Andes, the Medi-
terranean regions, and Africa. This legume has 
been grown in rotations with cereals for at least 
2000 years [1] and is widely distributed within 
the old and new worlds [2]. The grain may be easi-
ly harvested and contains the full range of essen-
tial amino acids, and because of its high concen-

tration of sulfur containing amino acids has high 
feed value for stock [2]. 
The lupin root nodule bacteria have all been clas-
sified within the genus Bradyrhizobium [3,4] with 
the exception of Microvirga lupini that was found 
to nodulate with Lupinus texensis [5]. 
Bradyrhizobium spp. are commonly associated 
with the nodulation of sub-tropical and tropical 
legumes such as soybean [6,7]. In contrast, lupins 
are the only agricultural grain legume nodulated 
by this genus in Mediterranean-type climatic 
zones. Strains of lupin-nodulating Bradyrhizobium 
are also able to nodulate the herbaceous Mediter-
ranean legume Ornithopus (seradella) spp. In this 
context, lupin Bradyrhizobium strains are rare 

http://dx.doi.org/10.1601/nm.17472�
http://dx.doi.org/10.1601/nm.1279�
http://dx.doi.org/10.1601/nm.809�
http://dx.doi.org/10.1601/nm.17472�
http://dx.doi.org/10.1601/nm.17472�
http://dx.doi.org/10.1601/nm.17472�
http://dx.doi.org/10.1601/nm.1459�
http://dx.doi.org/10.1601/nm.23531�
http://dx.doi.org/10.1601/nm.1459�
http://dx.doi.org/10.1601/nm.1459�
http://dx.doi.org/10.1601/nm.1459�


Bradyrhizob ium sp. strain WSM1417 

274 Standards in Genomic Sciences 

microsymbionts of herbaceous and crop legumes 
endemic to the cool climatic regions of the world. 
The cultivation of lupin in these regions provides a 
cash crop alternative to soy. Lupinus angustifolius 
in particular has been extensively used to extend 
grain production into poor quality soils without 
fertilizer supplementation since fixed nitrogen can 
be obtained from the symbiosis with 
Bradyrhizobium [8]. Considerable variation exists 
in the amount of N2 fixed in the lupin-
Bradyrhizobium association [8]. This is significant 
in agricultural ecosystems, as the benefits derived 
from growing lupins accrue both to the grain pro-
duced and the N2 fixed [9]. A well-grown lupin 
crop may fix up to 300 kg of N per ha. It is there-
fore important to understand the genetic con-
straints to optimal N2 fixation in this symbiosis. 
Bradyrhizobium sp. strain WSM1417 represents 
the lower end of the scale in strain N2 fixation ca-
pacity on L. angustifolius, and hence its genome 
sequence presents an opportunity to understand 
the genetic elements responsible for this trait. 
Here we present a summary classification and a 
set of general features for Bradyrhizobium sp. 
WSM1417 together with the description of the 
complete genome sequence and its annotation. 

Classification and general features 
Bradyrhizobium sp. WSM1417 is a motile, Gram-
negative, non-spore-forming rod (Figure 1 Left 
and Center) in the order Rhizobiales of the class 
Alphaproteobacteria. It is slow growing in labora-
tory culture, forming 1-2mm colonies within 7-10 
days when grown on half Lupin Agar (½LA) [10] 
at 28°C. Colonies on ½LA are white-opaque, 
slightly domed, moderately mucoid with smooth 
margins (Figure 1C). Minimum Information about 

the Genome Sequence (MIGS) is provided in Table 
1. Figure 2 shows the phylogenetic neighborhood 
of Bradyrhizobium sp. strain WSM1417 in a 16S 
rRNA sequence based tree. This strain clusters 
closest to Bradyrhizobium canariense LMG 22265T 
and Bradyrhizobium japonicum LMG 6138T with 
99.85% and 99.48% sequence identity, respec-
tively. 

Symbiotaxonomy 
Bradyrhizobium sp. WSM1417 is poorly effective 
on L. angustifolius, producing only 45% of the dry 
matter compared to that achieved by the commer-
cial inoculant strain Bradyrhizobium sp. WSM471 
on this species. In contrast on L. mutabilis, 
WSM1417 performs much better, yielding 83% of 
the dry matter produced by WSM471 on this same 
host. 

Genome sequencing and annotation 
information 
Genome project history 
This organism was selected for sequencing on the 
basis of its environmental and agricultural rele-
vance to issues in global carbon cycling, alterna-
tive energy production, and biogeochemical im-
portance, and is part of the Community Sequenc-
ing Program at the U.S. Department of Energy, 
Joint Genome Institute (JGI) for projects of rele-
vance to agency missions. The genome project is 
deposited in the Genomes OnLine Database [22] 
and an improved-high-quality-draft genome se-
quence in IMG. Sequencing, finishing and annota-
tion were performed by the JGI. A summary of the 
project information is shown in Table 2. 

 

 
Figure 1. Images of Bradyrhizob ium sp strain WSM1417 using  scanning (Left) and transmission (Center) elec-
tron microscopy as well as light microscopy to visualize colony morphology on a solid medium (Right). 
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Table 1. Classification and general features of Bradyrhizob ium sp. strain WSM1417 according  
to the MIGS recommendations [11,12]. 

MIGS ID Property Term Evidence code 

 

Current classification 
 

Domain Bacteria TAS [12] 

Phylum Proteobacteria  TAS [13] 

Class Alphaproteobacteria  TAS [4,14] 

Order Rhizob iales TAS [14,15] 

Family Bradyrhizob iaceae TAS [14,16] 

Genus Bradyrhizobium  TAS [17] 

Species Bradyrhizob ium sp. IDA 

 Gram stain Negative IDA 

 Cell shape Rod IDA 

 Motility Motile IDA 

 Sporulation Non-sporulating NAS 

 Temperature range Mesophile NAS 

 Optimum temperature 28°C NAS 

 Salinity Not reported  

MIGS-22 Oxygen requirement Aerobic NAS 

 Carbon source  Varied IDA 

 Energy source Chemoorganotroph NAS 

MIGS-6 Habitat Soil, root nodule, host  IDA 

MIGS-15 Biotic relationship Free living , symbiotic IDA 

MIGS-14 Pathogenicity Non-pathogenic NAS 

 Biosafety level 1 TAS [18] 

 Isolation Root nodule IDA 

MIGS-4 Geographic location Papudo, Chile IDA 

MIGS-5 Nodule collection date 1995 IDA 

MIGS-4.1  Longitude -71.452814 IDA 

MIGS-4.2 Latitude -32.521849 IDA 

MIGS-4.3 Depth Not recorded  

MIGS-4.4 Altitude Not recorded  

Evidence codes – IDA: Inferred from Direct Assay (i.e. first time published); TAS: Traceable 
Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author 
Statement (i.e., not directly observed for the living , isolated sample, but based on a generally 
accepted property for the species, or anecdotal evidence). These evidence codes are from 
the Gene Ontology project [19]. 
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Figure 2. Phylogenetic tree showing the relationships of Bradyrhizob ium sp. strain WSM1417 (shown in 
blue print) with some of the root nodule bacteria in the order Rhizobiales based on aligned sequences of the 
16S rRNA gene (1,334 bp internal region). All sites were informative and there were no gap-containing  sites. 
Phylogenetic analyses were performed using  MEGA, version 5.05 [20]. The tree was built using  the maxi-
mum likelihood method with the General Time Reversible model. Bootstrap analysis [21] with 500 repli-
cates was performed to assess the support of the clusters. Type strains are indicated with a superscript T. 
Strains with a genome sequencing  project registered in GOLD [22] are in bold print and the GOLD ID is 
mentioned after the accession number. Published genomes are designated with an asterisk. 
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Table 2. Genome sequencing  project information for Bradyrhizobium sp. strain WSM1417. 
MIGS ID Property Term 

MIGS-31 Finishing  quality Improved high-quality draft 

MIGS-28 Libraries used Illumina GAii shotgun and paired end 454 libraries 

MIGS-29 Sequencing platforms Illumina GAii and454 GS FLX Titanium technologies 

MIGS-31.2 Sequencing coverage 8.1× 454 paired end 

MIGS-30 Assemblers Velvet 1.0.13, Newbler 2.3, phrap 4.24 

MIGS-32  Gene calling  methods Prodigal 1.4, GenePRIMP 

 GOLD ID Gi06490 

 NCBI project ID 61989 

 Database: IMG 2507262055 

 Project relevance Symbiotic N2 fixation, agriculture 

Growth conditions and DNA isolation 
Bradyrhizobium sp. strain WSM1417 was grown to 
mid logarithmic phase in TY rich medium [23] on 
a gyratory shaker at 28°C. DNA was isolated from 
60 mL of cells using a CTAB 
(Cetyltrimethylammonium bromide) bacterial ge-
nomic DNA isolation method [24]. 

Genome sequencing and assembly 
The genome of Bradyrhizobium sp. strain 
WSM1417 was sequenced at the Joint Genome In-
stitute (JGI) using a combination of Illumina [25] 
and 454 technologies [26]. An Illumina GAii shot-
gun library which generated 82,690,654 reads to-
taling 6,284.5 Mb, and a paired end 454 library 
with an average insert size of 10 kb which gener-
ated 770,255 reads totaling 144.4 Mb of 454 data 
were generated for this genome. All general as-
pects of library construction and sequencing per-
formed at the JGI can be found at the JGI website 
[24]. The initial draft assembly contained 2 
contigs in 1 scaffold. The 454 paired end data was 
assembled with Newbler, version 2.3. The 
Newbler consensus sequences were computation-
ally shredded into 2 kb overlapping fake reads 
(shreds). Illumina sequencing data were assem-
bled with Velvet, version 1.0.13 [27], and the con-
sensus sequences were computationally shredded 

into 1.5 kb overlapping fake reads (shreds). We 
integrated the 454 Newbler consensus shreds, the 
Illumina Velvet consensus shreds and the read 
pairs in the 454 paired end library using parallel 
phrap, version SPS - 4.24 (High Performance 
Software, LLC). The software Consed (Ewing and 
Green 1998; Ewing et al. 1998; Gordon et al. 1998) 
was used in the following finishing process. 
Illumina data was used to correct potential base 
errors and increase consensus quality using the 
software Polisher developed at JGI (Alla Lapidus, 
unpublished). Possible mis-assemblies were cor-
rected using gapResolution (Cliff Han, un-
published), Dupfinisher (Han, 2006), or sequenc-
ing cloned bridging PCR fragments with 
subcloning. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR (J-F 
Cheng, unpublished) primer walks. A total of 126 
additional reactions were necessary to close gaps 
and to raise the quality of the finished sequence. 
The estimated genome size is 8.1 Mb and the final 
assembly is based on 65.8 Mb of 454 draft data, 
which provides an average 8.1× coverage of the 
genome. 
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Genome annotation 
Genes were identified using Prodigal [28] as part 
of the DOE-JGI Annotation pipeline [29], followed 
by a round of manual curation using the JGI 
GenePRIMP pipeline [30]. The predicted CDSs 
were translated and used to search the National 
Center for Biotechnology Information (NCBI) non-
redundant database, UniProt, TIGRFam, Pfam, 
PRIAM, KEGG, COG, and InterPro databases. These 
data sources were combined to assert a product 
description for each predicted protein. Non-
coding genes and miscellaneous features were 
predicted using tRNAscan-SE [31], RNAMMer [32], 
Rfam [33], TMHMM [34], and SignalP [35]. Addi-
tional gene prediction analyses and functional an-

notation were performed within the Integrated 
Microbial Genomes (IMG-ER) platform [24,36]. 

Genome properties 
The genome is 8,048,963 nucleotides with 63.16% 
GC content (Table 3) and comprised of a single 
scaffold of two contigs. From a total of 7,772 
genes, 7,695were protein encoding and 77 RNA 
only encoding genes. Within the genome, 272 
pseudogenes were also identified. The majority of 
genes (74.03%) were assigned a putative function 
whilst the remaining genes were annotated as hy-
pothetical. The distribution of genes into COGs 
functional categories is presented in Table 4 and 
Figure 3. 

 

Table 3. Genome statistics for Bradyrhizob ium sp. strain WSM1417. 
Attribute Value % of Total 

Genome size (bp) 8,048,963 100.00 

DNA coding reg ion (bp) 6,769,978 84.11 

DNA G+C content (bp) 5,084,093 63.16 

Number of scaffolds 1  

Number of contigs 2  

Total genes 7,772 100.00 

RNA genes 77 0.99 

rRNA operons 1  

Protein-coding genes 7,695 99.01 

Genes with function prediction 5,754 74.03 

Genes assigned to COGs 5,704 73.39 

Genes assigned Pfam domains 6,011 77.34 

Genes with signal peptides 872 11.22 

Genes with transmembrane helices 1,826 23.49 

CRISPR repeats 0  
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Figure 3. Graphical circular map of the chromosome of Bradyrhizob ium sp. strain WSM1417. From outside 
to the center: Genes on forward strand (color by COG categories as denoted by the IMG platform), Genes on 
reverse strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC con-
tent, GC skew. 
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Table 4. Number of protein coding genes of Bradyrhizob ium sp. WSM1417 associated 
with the general COG functional categories. 

Code Value %age COG Category 

J 202 3.15 Translation, ribosomal structure and biogenesis 

A 3 0.05 RNA processing  and modification 

K 430 6.71 Transcription 

L 283 4.42 Replication, recombination and repair 

B 2 0.03 Chromatin structure and dynamics 

D 37 0.58 Cell cycle control, mitosis and meiosis 

Y 0 0.00 Nuclear structure 

V 90 1.40 Defense mechanisms 

T 354 5.53 Signal transduction mechanisms 

M 315 4.92 Cell wall/membrane biogenesis 

N 130 2.03 Cell motility 

Z 1 0.02 Cytoskeleton 

W 0 0.00 Extracellular structures 

U 138 2.15 Intracellular trafficking and secretion 

O 210 3.28 Posttranslational modification, protein turnover, chaperones 

C 417 6.51 Energy production conversion 

G 431 6.73 Carbohydrate transport and metabolism 

E 678 10.58 Amino acid transport metabolism 

F 90 1.40 Nucleotide transport and metabolism 

H 235 3.67 Coenzyme transport and metabolism 

I 332  5.18 Lipid transport and metabolism 

P 331 5.17 Inorganic ion transport and metabolism 

Q 244 3.81 Secondary metabolite biosynthesis, transport and catabolism 

R 793 12.38 General function prediction only 

S 660 10.30 Function unknown 

- 2,068 26.61 Not in COGS 
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