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Desulfohalobium retbaense (Ollivier et al. 1991) is the type species of the polyphyletic genus 
Desulfohalobium, which comprises, at the time of writing, two species and represents the 
family Desulfohalobiaceae within the Deltaproteobacteria. D. retbaense is a moderately ha-
lophilic sulfate-reducing bacterium, which can utilize H2 and a limited range of organic sub-
strates, which are incompletely oxidized to acetate and CO2, for growth. The type strain 
HR100

T was isolated from sediments of the hypersaline Retba Lake in Senegal. Here we de-
scribe the features of this organism, together with the complete genome sequence and anno-
tation. This is the first completed genome sequence of a member of the family Desulfohalo-
biaceae. The 2,909,567 bp genome (one chromosome and a 45,263 bp plasmid) with its 
2,552 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria 
and Archaea project. 

Introduction 
Strain HR100T (= DSM 5692) is the type strain of 
the species Desulfohalobium retbaense [1]. HR100T

is the only strain available from culture collections 
belonging to this species and was isolated from 
surface sediments of the hypersaline Retba Lake 
in Senegal (Western Africa). This strain was the 
first cultivated sulfate-reducing bacterium, which 
grows in media containing NaCl concentrations up 
to 24% and the first described hydrogenotrophic 
anaerobe able to grow at salinities above 10% [1]. 

Interestingly, the total salt concentration of the 
Retba Lake was 34% at the time of sampling, 
which would indicate that cells of this strain were 
not able to proliferate in the habitat from which 
they were originally isolated. This phenomenon 
was later also reported in a study on the diversity 
of sulfate-reducing bacteria in hypersaline sedi-
ments of the Great Salt Lake (Utah) [2]. This effect 
could either be explained by niches of lower salin-
ity in the respective habitats, which would allow 
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proliferation at distinct sites or, alternatively, that 
the in vitro halotolerance of these strains is differ-
ent from the salt tolerance in the natural envi-
ronment. One reason for the observed growth in-
hibition of sulfate-reducers at salinities above 
24% may be the energy expensive synthesis of 
compatible osmotic solutes, which are required in 
large amounts to retain cellular integrity at high 
external salt concentrations. Under anoxic condi-
tions bacteria that depend on sulfate as electron 
acceptor gain less energy than microorganisms 
that use photosynthesis or denitrification for 
growth, so that the latter metabolic types have a 
selective advantage in hypersaline environments 
[3]. Here we present a summary classification and 
a set of features for D. retbaense strain HR100T, to-
gether with the description of the complete ge-
nomic sequencing and annotation. 

Classification and features 
So far, no 16S rRNA gene sequences with high si-
milarity (>95%) to the sequence of D. retbaense 
have been deposited in public databases, although 
several anoxic sediments with high salinity have 
been analyzed by cultivation independent me-
thods (as of October 2009) since D. retbaense was 
described. Consequently, it appears that cells of 
sulfate-reducing bacteria related to this species 
are of very low abundance in most hypersaline 
environments. Besides several strains of the genus 

Desulfovibrio, the only other member of the order 
Desulfovibrionales with a sequenced genome is 
Desulfomicrobium baculatum type strain XT [4]. 
D. retbaense is the type species of the genus Desul-
fohalobium, which represents the recently pro-
posed family Desulfohalobiaceae within the class 
Deltaproteobacteria [5]. The genus Desulfohalo-
bium is currently polyphyletic due to the species 
D. utahense, which is phylogenetically more close-
ly related to Desulfovermiculus halophilus, with 
high bootstrapping support in the 16S rRNA tree 
(Figure 1) Also, both share a 16S rRNA gene se-
quence similarity of 96.9%, whereas the two De-
sulfohalobium species display a sequence similari-
ty of only 90.5%. Hence, it is possible that the spe-
cies D. utahense has been misclassified, although it 
appears to be phenotypically more similar to D. 
retbaense than to Desulfovermiculus halophilus 
[10]. The taxonomy of the two genera thus needs 
to be reconsidered. 
Figure 1 shows the phylogenetic neighborhood of 
D. retbaense strain HR100T in a 16S rRNA based 
tree. The two 16S rRNA gene copies in the genome 
of strain HR100T do not differ from each other, and 
differ by four nucleotides from the previously 
published 16S rRNA sequence generated from 
DSM 5692 (X99235). The difference between the 
genome data and the reported 16S rRNA gene se-
quence is most likely due to sequencing errors in 
the previously reported sequence data. 

Figure 1. Phylogenetic tree highlighting the position of strain HR100
T, D. retbaense DSM 5692, relative to the other 

type strains within the family. The tree was inferred from 1,386 aligned characters [6,7] of the 16S rRNA gene  
sequence under the maximum likelihood criterion [8] and rooted in accordance with the type strain of the order 
Desulfovibrionales. The branches are scaled in terms of the expected number of substitutions per site. Numbers 
above branches are support values from 1,000 bootstrap replicates if larger than 60%. Lineages with type strain 
genome sequencing projects registered in GOLD [9] are shown in blue, published genomes in bold. 

Cells of D. retbaense HR100T are straight to slightly 
curved rods with rounded ends (Table 1 and Fig-
ure 2). They have dimensions of 0.7-0.9 x 1-3 µm 
and stain Gram-negative. In medium containing 

lactate as substrate, cells can form filaments up to 
20 µm in length. Motility is conferred by one or 
two polar flagella [1]. 
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Strain HR100T is halophilic and requires NaCl and 
MgCl2 for growth. The optimal NaCl concentration 
for growth is near 10% and salinities up to 24% 
are tolerated. The pH range for growth is 5.5 to 8.0 
with an optimum between pH 6.5 and 7.0. Growth 
of this strain occurs at temperatures from 25 to 
43°C and is optimal between 37 and 40°C [1]. 
The nutritional characteristics of strain HR100T are 
as follows: Vitamins and an organic carbon source 

are required for growth in mineral medium.  
Hydrogen is utilized mixotrophically with acetate, 
yeast extract or biotrypcase as the carbon source, 
but not autotrophically. Organic carbon sources 
supporting growth are formate, ethanol, pyruvate 
and lactate. Sulfate, sulfur, thiosulfate and sulfite 
are used as electron acceptors and are reduced to 
H2S. In the absence of sulfate pyruvate can be also 
utilized fermentatively [1]. 

Figure 2. Scanning electron micrograph of cells of D. retbaense strain HR100
T 

Chemotaxonomy 
Spectrophotometry of cell extracts indicate the 
presence of soluble c-type cytochromes having 
absorption maxima at 418.5, 522.5 and 552 nm in 
the reduced state, which would be characteristic 
for cytochrome c3. A dissimilatory sulfite reduc-
tase with a similar absorption spectrum as the en-
zyme of Desulfomicrobium baculatum (desulforu-
bidin) was detected, but no desulfoviridin, which 
is diagnostic for members of the genus Desulfovi-
brio [1]. The respiratory lipoquinone composition 
of strain HR100T has not been reported, but the 
moderately related species Desulfovermiculus ha-
lophilus was shown to contain the menaquinone 
MK-7 [18]. The whole cell fatty acid pattern of 
strain HR100T is dominated by straight- and 
branched-chain saturated fatty acids (approx. 
68%). Branched chain saturated fatty acids ac-

count for 30% of the total fatty acids, with iso-C15:0 
predominating. In addition, the fatty acid profile 
contains branched-chain, mono-unsaturated fatty 
acids, such as iso-C17:1ω7c and branched C18:1 ω 6 [1]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position, and is part of the 
Genomic Encyclopedia of Bacteria and Archaea 
project [19]. The genome project is deposited in 
the Genomes OnLine Database [9] and the com-
plete genome sequence is available in GenBank. 
Sequencing, finishing and annotation were per-
formed by the DOE Joint Genome Institute (JGI). A 
summary of the project information is shown in 
Table 2.  

http://standardsingenomics.org/�
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Table 1. Classification and general features of D. retbaense strain HR100
T according to the MIGS recommendations [11] 

MIGS ID Property Term Evidence code 

 Current classification 
 

Domain Bacteria TAS [12] 
Phylum Proteobacteria TAS [13] 
Class Deltaproteobacteria TAS [14,15] 
Order Desulfovibrionales TAS [14] 
Family Desulfohalobiaceae TAS [14] 
Genus Desulfohalobium TAS [1] 
Species Desulfohalobium retbaense TAS [1] 
Type strain HR100

 TAS [1] 
 Gram stain negative TAS [1] 

 Cell shape rod with rounded ends TAS [1] 

 Motility motile (one or two polar flagella) TAS [1] 

 Sporulation nonsporulating TAS [1] 

 Temperature range 25-43°C TAS [1] 

 Optimum temperature 37-40°C TAS [1] 

 Salinity >0-240 g/l (optimum 100 g/l) TAS [1] 
MIGS-22 Oxygen requirement obligate anaerobic TAS [1] 
 Carbon source acetate, biotrypcase, yeast extract TAS [1] 

 Energy source H2, formate, lactate, ethanol, pyruvate TAS [1] 
MIGS-6 Habitat hypersaline sediments TAS [1] 
MIGS-15 Biotic relationship free living NAS 
MIGS-14 Pathogenicity none TAS [16] 
 Biosafety level 1 TAS [16] 

 Isolation surface sediment TAS [1] 
MIGS-4 Geographic location Retba Lake, Senegal TAS [1] 
MIGS-5 Sample collection time 1989 NAS 
MIGS-4.1 
MIGS-4.2 

Latitude, Longitude 14.84, -17.23 NAS 

MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude -4 m TAS [1] 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal  
evidence). These evidence codes are from the Gene Ontology project [17]. If the evidence code is IDA, then 
the property was directly observed for a live isolate by one of the authors or an expert mentioned in the  
acknowledgments. 

Growth conditions and DNA isolation
D. retbaense strain HR100T, DSM 5692, was grown 
anaerobically in DSMZ medium 499 [20] at 35°C. 
DNA was isolated from 1-1.5 g of cell paste using 
Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, 
Germany) following the manufacturer's instruc-
tions. 
Genome sequencing and assembly 
The genome was sequenced using a combination 
of 8 kb and fosmid DNA libraries. All general as-
pects of library construction and sequencing per-
formed at the JGI can be found at the 
http://www.jgi.doe.gov/. The Phred/Phrap/Consed 

software package (http://www.phrap.com) was 
used for sequence assembly and quality assess-
ment. Possible mis-assemblies were corrected 
with Dupfinisher [21] or transposon bombing of 
bridging clones [22]. Gaps between contigs were 
closed by editing in Consed, custom primer walk 
or PCR amplification. Sanger finishing reads 
(n=889) were produced to close gaps and to raise 
the quality of the finished sequence. The error rate 
of the completed genome sequence is less than 1 
in 100,000. The final assembly consists of 42,114 
Sanger reads. Together all sequence provided 
10.7× coverage of the genome.  

http://www.jgi.doe.gov/�
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Table 2. Genome sequencing project information 

MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used Two genomic libraries - 8 kb pMCL200 
and fosmid pcc1Fos 

MIGS-29 Sequencing platforms ABI3730 

MIGS-31.2 Sequencing coverage 10.7× Sanger 
MIGS-30 Assemblers phrap 
MIGS-32 Gene calling method Prodigal 
 INSDC ID CP001734 (chromosome)  

CP001735 (plasmid) 
 GenBank Date of Release September 14, 2009 

 GOLD ID Gc01111 

 NCBI project ID 29199 

 Database: IMG-GEBA 2501939614 
MIGS-13 Source material identifier DSM 5692 
 Project relevance Tree of Life, GEBA 

Genome annotation 
Genes were identified using Prodigal [23] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [24]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and manual functional annotation was per-
formed within the Integrated Microbial Genomes 
Expert Review (IMG-ER) platform [25]. 

Genome properties 
The 2,909,567 bp genome consists of a 2,864,304 
bp long chromosome and a 45,263 bp long plas-
mid with a 57.3% GC content (Table 3 and Figure 
3). Of the 2,609 genes predicted, 2,552 were pro-
tein coding genes, and 57 RNAs; 29 pseudogenes 
were also identified. The majority of the protein-
coding genes (73.6%) were assigned with a puta-
tive function while those remaining were anno-
tated as hypothetical proteins. The distribution of 
genes into COGs functional categories is presented 
in Table 4. 

Insights from the genome sequence 
Electron donor utilization 
Similar to representatives of the genus Desulfovi-
brio, the preferred substrates of D. retbaense are 
H2 and lactate, the latter which is incompletely 
oxidized to acetate. Several genes could be identi-

fied that are involved in H2 dependent sulfate re-
duction in Desulfovibrio species. It is assumed that 
in species of this genus H2 is oxidized by perip-
lasmic Fe- or NiFeSe-hydrogenases and the result-
ing electrons are transferred to a pool of perip-
lasmic cytochrome c3. Then, membrane-bound 
protein complexes transfer electrons from the 
pool of reduced cytochrome c3 to menaquinone or 
directly to cytoplasmic enzymes involved in the 
reduction of sulfate to sulfide [26]. Recently, a 
novel molybdopterin oxidoreductase (Mop) could 
be identified in Desulfovibrio desulfuricans G20 
that may represent a periplasm-facing transmem-
brane complex, which shuttles electrons from cy-
tochrome c3 to the menaquinone pool [27]. It is 
thought that electrons are transferred from the 
reduced quinone pool to adenosine phosphosul-
fate and sulfite via the membrane-bound respira-
tory complexes Qmo [28] and Dsr [29], respective-
ly. A similar electron transfer chain for the oxida-
tion of H2 with sulfate appears to be functional in 
D. retbaense: The uptake of H2 is probably cata-
lyzed in this species by a heterodimeric NiFe- or 
NiFeSe-hydrogenase encoded by the genes 
Dret_0265 (hydB) and Dret_0266 (hydA). Six genes 
of the completed genome were annotated as cy-
tochromes class III containing at least one domain 
with homology to a tetraheme cytochrome c3. 
Electrons could be transferred from the reduced 
cytochrome c pool to menaquinone by a putative 
Mop complex (Dret_0270/Dret_0273) that is lo-
cated in close proximity to the hydrogenase genes. 

http://standardsingenomics.org/�
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A membrane-bound Qmo complex (Dret_1963, 
Dret_1964, and Dret_1965) was also identified 
adjacent to the genes of the dissimilatory adenylyl 
sulfate reductase (aprAB). Likewise, genes encod-
ing the five subunits DsrMKJOP complex 
(Dret_0235/Dret_0239) were found close to genes 
of the α and β subunits of the dissimilatory sulfite 
reductase (dsrAB). Hence, it appears that the pro-

posed organization of the electron transfer chain 
from H2 to sulfate seems to be conserved not only 
in species of the genus Desulfovibrio, but also in 
other sulfate-reducing members of the Deltapro-
teobacteria. In Figure 4 an illustration of the hypo-
thetical electron transfer chain in D. retbaense is 
given, which is mainly based on results previously 
obtained with H2-utilizing Desulfovibrio species.  

 

Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 2,909,567 100.00% 
DNA coding region (bp) 2,510,084 86.27% 
DNA G+C content (bp) 1,666,078 57.33% 
Number of replicons 2  
Extrachromosomal elements 1  
Total genes 2,609 100.00% 
RNA genes 57 2.18% 
rRNA operons 2  
Protein-coding genes 2,552 97.82% 
Pseudo genes 29 1.11% 
Genes with function prediction 1,920 73.59% 
Genes in paralog clusters 266 10.20% 
Genes assigned to COGs 1,976 75.74% 
Genes assigned Pfam domains 1,968 75.43% 
Genes with signal peptides 456 17.48% 
Genes with transmembrane helices 634 24.30% 
CRISPR repeats 1  

 
Several genes that are involved in the incomplete 
oxidation of lactate to acetate could be detected in 
the complete genome sequence. The transport of 
lactate in the cytoplasm is probably facilitated by a 
specific permease encoded by the gene Dret_1039. 
Following transport, lactate is oxidized to pyru-
vate by a putative L-lactate dehydrogenase 
(Dret_0157). Pyruvate is then oxidatively decar-
boxylated by a pyruvate ferredoxin oxidoreduc-
tase to acetyl-CoA. Interestingly, the gene 
Dret_1036 encoding a homodimeric pyruvate fer-
redoxin oxidoreductase is located in close proxim-
ity to the lactate permease gene and genes re-
sponsible for the substrate level phosphorylation 
of ADP to ATP via conversion of acetyl-CoA to ace-
tate, i.e. phosphotransacetylase (Dret_1035) and 
acetate kinase (Dret_1034). 
Besides substrate level phosphorylation, genera-
tion of ATP is also possible by the utilization of a 

chemiosmotic proton gradient through a F0F1 
ATP synthase complex, which is encoded at two 
different sites of the genome. One gene cluster en-
codes the cytoplasmic F1 part along with the B-
subunit of the membrane-bound F0 complex 
(Dret_2211/Dret_2217), whereas the remaining 
F0 subunits A (Dret_2087) and C (Dret_2086) are 
encoded elsewhere. 

Intermediary carbon metabolism 
D. retbaense is not able to grow autotrophically 
with CO2 as carbon source and needs acetate or 
complex carbon sources for growth with H2 as 
energy source. Intermediary carbon compounds 
required as precursors for the biosynthesis of cel-
lular components are probably synthesized by a 
partial reverse tricarboxylic acid (TCA) cycle. A 
possible pathway for the assimilation of acetate 
starts with the synthesis of pyruvate from acetyl-
CoA through a carboxylating reaction catalyzed by 
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the pyruvate ferredoxin oxidoreductase (Dret_1036). 
Pyruvate can then be either activated to phos-
phoenolpyruvate by the enzyme pyruvate, water 
dikinase (Dret_0098) to enable gluconeogenesis 
or is further carboxylated to oxaloacetate by py-
ruvate carboxylase, which is encoded by two sep-
arate genes (Dret_0690 and Dret_1120). Alterna-
tively, pyruvate can be also used for the synthesis 
of malate by malic enzyme (Dret_0778), which 
requires NADP+ as cofactor. The remaining major 
precursors for anabolic reactions can then be pro-
duced starting from malate by reactions of the re-

verse TCA cycle, involving the enzymes fumarase 
(Dret_1068, Dret_1069), fumarate reductase 
(Dret_1065, Dret_1066,  and Dret_1067), succinyl-
CoA synthetase (Dret_0545) and 2-oxoglutarate 
ferredoxin oxidoreductase (Dret_1400/Dret_1403). 
The important five carbon precursor 2-oxo-
glutarate could also be synthesized from citrate by 
aconitase (Dret_1771) and isocitrate dehydroge-
nase (Dret_0439). Genes encoding the enzymes 
ATP-citrate lyase or citrate synthase were not de-
tected in the annotated genome sequence, so that 
a closing of the TCA cycle is apparently prevented. 

 

Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand 
(color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, 
rRNAs red, other RNAs black), GC content, GC skew. 

Defense against osmotic and oxidative stress
Cells of D. retbaense inhabit saline environments 
and hence need appropriate protection against 
low water activity or varying salt concentrations. 
The accumulation of compatible solutes is a wide-
spread strategy among microorganisms to protect 
against osmotic stress. In the distantly related 
moderately halophilic sulfate-reducing bacterium 
Desulfovibrio halophilus, the organic solutes treha-
lose and glycine betaine were identified as osmo-
protectants [30]. In the genome of D. retbaense 

DSM 5692 several genes could be detected that 
may be involved in the intracellular synthesis or 
accumulation of the above mentioned compatible 
solutes. For instance, the organic solute trehalose 
can be synthesized from UDP-D-glucose and al-
pha-D-glucose 6-phosphate by the enzymes treha-
lose-6-phosphate synthase (Dret_1902) and treha-
lose-6-phosphatase (Dret_1903). Alternatively, 
trehalose may be produced from the reserve car-
bohydrate glycogen, if the enzymes malto-

http://standardsingenomics.org/�
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oligosyltrehalose synthase (Dret_0039) and mal-
to-oligosyltrehalose trehalohydrolase (Dret_0037) 
are expressed. On the other hand, the gene 
Dret_0035 encodes a trehalose synthase that can 

transform maltose directly into trehalose and vice 
versa, so that an excess of trehalose can be con-
verted to glycogen again. 

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 151 5.9 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 94 3.7 Transcription 
L 129 5.1 Replication, recombination and repair 
B 2 0.1 Chromatin structure and dynamics 
D 28 1.1 Cell cycle control, mitosis and meiosis 
Y 0 0.0 Nuclear structure 
V 21 0.8 Defense mechanisms 
T 168 6.6 Signal transduction mechanisms 
M 146 5.7 Cell wall/membrane biogenesis 
N 74 2.9 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 82 3.2 Intracellular trafficking and secretion 
O 100 3.9 Posttranslational modification, protein turnover, chaperones 
C 191 7.5 Energy production and conversion 
G 101 4.0 Carbohydrate transport and metabolism 
E 188 7.4 Amino acid transport and metabolism 
F 53 2.1 Nucleotide transport and metabolism 
H 109 4.3 Coenzyme transport and metabolism 
I 43 1.7 Lipid transport and metabolism 
P 95 3.7 Inorganic ion transport and metabolism 
Q 20 0.8 Secondary metabolites biosynthesis, transport and catabolism 
R 212 8.3 General function prediction only 
S 152 6.0 Function unknown 
- 633 24.8 Not in COGs 

 
The second osmotic solute in D. retbaense appears 
to be glycine betaine, which can be accumulated in 
two different ways: The most efficient way in 
terms of energy represents the uptake from the 
environment. Glycine betaine is produced by 
many cyanobacteria or halophilic anoxygenic pho-
tosynthetic bacteria and is released continuously 
in the environment by excretion or cell lysis. The 
genome of D. retbaense DSM 5692 contains two 
distinct gene clusters (Dret_0768/Dret_0771 and 
Dret_22771/Dret_22773) that could encode high 
affinity ABC transporters for the uptake of glycine 
betaine. Several separate genes encoding perip-
lasmic glycine betaine binding proteins were also 

found and could have a function in the regulation 
of genes in response to the presence of glycine 
betaine in the environment. An alternative route 
for the accumulation of glycine betaine is based on 
the uptake of choline. This quaternary amine is an 
essential component of eukaryotic cell mem-
branes and hence ubiquitous in most environ-
ments. Two genes were found that encode puta-
tive choline transporters, Dret_1055 and 
Dret_2376. Following transport to the cytoplasm, 
choline could then be oxidized to glycine betaine 
by the enzymes choline dehydrogenase 
(Dret_0130) and betaine aldehyde dehydrogenase 
(Dret_0129). 
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Figure 4. Proposed organization of the electron transfer chain in D. ret-
baense with H2 as electron donor and sulfate as electron acceptor. Gene 
products are designated according to the information given in Supplementary 
Table 1. Subunits of multiprotein complexes are labeled with capital letters. 
Abbreviations: APS, adenosine-5'-phosphosulfate; AMP, adenosine  
monophosphate; MQ, menaquinone; MQH2, dihydromenaquinone. 

The sensitivity of the obligately anaerobic species 
D. retbaense to oxygen exposure has not been ana-
lyzed in detail, but it can be assumed that it is 
quite moderate as in most other studied sulfate-
reducing bacteria [31]. A close inspection of the 
annotated genome sequence revealed a complex 
network of antioxidant proteins protecting cells of 
this species against oxidative stress. Aerobic res-
piration was identified as one principal mechan-
ism for the detoxification of oxygen in Gram-
negative sulfate-reducers [32]. In D. retbaense 
DSM 5692, genes for the two subunits of a cytoch-
rome bd quinol oxidase (Dret_0135 and 
Dret_0136) were identified. This type of oxidase is 
the most common terminal oxidase among Gram-
negative sulfate-reducers and characterized by a 
high-affinity to oxygen [32,33]. For the detoxifica-
tion of reactive oxygen species that emerge from 
the contact of oxygen with cellular redox enzymes 
several protection systems seem to be present. A 
di-heme cytochrome c peroxidase (Dret_1885) 

that is probably localized in the periplasmic space 
[34] is able to reduce H2O2 to water, whereas a 
catalase (Dret_1236) produces oxygen from the 
inactivation of H2O2. On the other hand, in the cy-
toplasm multiprotein complexes containing ru-
bredoxins (Dret_0886, Dret_0139), rubrerythrins 
(Dret_0191, Dret_1205, Dret_1644, Dret_2310) 
and desulfoferrodoxin (Dret_0140) could establish 
electron transfer systems for the reduction of su-
peroxide radicals and H2O2 [35,36]. Finally, cellu-
lar proteins and lipids that became damaged by 
reactive oxygen species could be repaired by a 
methionine sulfoxide reductase (Dret_2264), pe-
roxiredoxin (Dret_2393) and an alkylhydroperox-
idase (Dret_1223). 
Thus, based on the results of the genome analysis 
it seems that this species is very well adapted to 
frequent changes in salinity and redox conditions 
in its natural environment, the sediments of 
hypersaline lakes. 
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