Open Access

Genome sequence of the soil bacterium Corynebacterium callunae type strain DSM 20147T

  • Marcus Persicke17,
  • Andreas Albersmeier17,
  • Hanna Bednarz18,
  • Karsten Niehaus18,
  • Jörn Kalinowski17 and
  • Christian Rückert17Email author
Standards in Genomic Sciences201510:5

DOI: 10.1186/1944-3277-10-5

Received: 29 July 2014

Accepted: 21 November 2014

Published: 21 January 2015

Abstract

Corynebacterium callunae DSM 20147T is a member of the genus Corynebacterium which contains Gram-positive and non-spore forming bacteria with a high G + C content. C. callunae was isolated during a screening for l-glutamic acid producing bacteria and belongs to the aerobic and non-haemolytic corynebacteria. As this is a type strain in a subgroup of industrial relevant bacteria for many of which there are also complete genome sequence available, knowledge of the complete genome sequence might enable genome comparisons to identify production relevant genetic loci. This project, describing the 2.84 Mbp long chromosome and the two plasmids, pCC1 (4.11 kbp) and pCC2 (85.02 kbp), with their 2,647 protein-coding and 82 RNA genes, will aid the Genomic Encyclopedia of Bacteria and Archaea project.

Keywords

Aerobic Non-motile Gram-positive Non-spore forming Glutamic acid producing

Introduction

Strain DSM 20147T is the type strain in a subgroup of industrial relevant bacteria originally isolated during a screening for l-glutamic acid producing microorganisms and was classified to belong to the genus Corynebacterium[1]. This genus is comprised of Gram-positive bacteria with a high G + C content. It currently contains 126 validly published members (species and subspecies), 4 of which are synonyms of other species within the genus, 27 that were later reclassified as members of 7 other genera, and 1 member abolished in erratum [211]. The remaining 93 were isolated from diverse backgrounds like soil, sea, or ripening cheese, but also from human clinical samples and animals.

Within this diverse genus, C. callunae has been found to be a producer of l-glutamic acid, like one of the most prominent representatives of the corynebacteria, C. glutamicum[1]. The biological context of this species is, unfortunately, basically unknown as it was first described in a patent application [1] that does neither mention the geographic location nor the exact habitat of the strain. Based on the name and the habitats of its close relatives C. glutamicum, C. deserti, and C. efficiens, the most likely habitat of C. callunae is soil around heather plants. But while the biotechnological uses and capabilities of this subgroup within the genus Corynebacterium has been studied in detail, especially for C. glutamicum, the ability of all these strains to secrete considerable amounts of l-glutamic acid is still not well understood in the context of the environment.

C. callunae DSM 20147T harbors two cryptic plasmids: pCC1 (4,109 bp) which encodes a Rep protein that shows similarity to the corynebacterial plasmid pAG3 and pBL1, and pCC2 (85,023 bp) the Rep protein of which has possible orthologs in many other corynebacteria. Aside from this, DSM 20147T is an alkaline-tolerant bacterium, which grows well at pH 5.0 - 9.0 (optimum pH 6–8) [1]. Here we present a summary classification and a set of features for C. callunae DSM 20147T, together with the description of the genomic sequencing and annotation.

Organism information

Classification and features

A representative genomic 16S rRNA sequence of C. callunae DSM 20147T was compared to the Ribosomal Database Project database [12] confirming the initial taxonomic classification. C. callunae shows highest similarity to C. glutamicum and C. deserti (97%, respectively).

Figure 1 shows the phylogenetic neighborhood of C. callunae in a 16S rRNA based tree. C. callunae forms a subgroup containing furthermore the species C. glutamicum ATCC 13032T, C. deserti GIMN1.010T, and C. efficiens YS-314T.
Figure 1

Phylogenetic tree highlighting the position of C. callunae relative to type strains of other species within the genus Corynebacterium . Species with at least one publicly available genome sequence (not necessarily the type strain) are highlighted in bold face. The tree is based on sequences aligned by the RDP aligner and utilizes the Jukes-Cantor corrected distance model to construct a distance matrix based on alignment model positions without alignment inserts, using a minimum comparable position of 200. The tree is built with RDP Tree Builder, which utilizes Weighbor [13] with an alphabet size of 4 and length size of 1000. The building of the tree also involves a bootstrapping process repeated 100 times to generate a majority consensus tree [14]Rhodococcus equi (X80614) was used as an outgroup.

C. callunae DSM 20147T is a Gram-positive rod shaped bacterium, which is 1–2 μm long and 0.4-0.6 μm wide (Figure 2). It is described to be non-motile [1], which coincides with a complete lack of genes associated with ‘cell motility’ (functional category N in COGs table). Growth of DSM 20147T was shown at temperatures between 25–37°C with optimal l-glutamic acid production between 25–35°C [1]. Carbon sources utilized by strain DSM 20147T include dextrose, fructose, galactose, inulin, inositol, maltose, mannitol, mannose, raffinose, salicin, sucrose and trehalose [1]. DSM 20147T tested positive for citrate, catalase and urease, but shows no nitrate reduction activity [1]. Details on the chemotaxonomy are largely missing, but can be inferred from the close relatives C. glutamicum, C. efficiens, and C. deserti[3]. Based on these relatives, meso-diaminopimelic acid is expected to be the major diamino acid of the cell wall, with arabinose and galactose as the main sugars (chemotype IV). Short-chain mycolic acids (32 ± 36 carbon atoms) are also certain to be present, as all necessary genes were found to be present. The major cellular fatty acids are expected to be hexadecanoic acid (C16:0, 40-50%) and octadecenoic acid (C18:1 ω9c, 40-50%) with small amounts of octadecanoic acid (C18:0, ~1%) and possible others. MK-9(H2) is thought to be the major menaquinone, although MK-8(H2) might also be present in significant amounts. Phosphatidylinositol, diphosphatidylglycerol, and phosphatidylglycerol as well as their glycosides are expected to be the main components of the polar lipids (Table 1).
Figure 2

Scanning electron micrograph of C. callunae DSM 20147 T .

Table 1

Classification and general features of C. callunae DSM 20147 T according to the MIGS recommendations [15]

MIGS ID

Property

Term

Evidence code a)

 

Current classification

Domain Bacteria

TAS [16]

Phylum ‘Actinobacteria

TAS [17]

Class Actinobacteria

TAS [18, 19]

Order Actinomycetales

TAS [18, 2022]

Family Corynebacteriaceae

TAS [18, 20, 22, 23]

Genus Corynebacterium

TAS [24, 25]

Species Corynebacterium callunae

TAS [1, 22, 26]

Type-strain DSM 20147

TAS [1, 22, 26]

 

Gram stain

Positive

TAS [1]

 

Cell shape

Rod-shaped

TAS [1]

 

Motility

Non-motile

TAS [1]

 

Sporulation

Non-sporulating

TAS [1]

 

Temperature range

Mesophile

TAS [1]

 

pH range

5 - 9; optimum 6 - 8

TAS [1]

 

Salinity

Not reported

TAS [1]

MIGS-22

Oxygen requirement

Aerobe

TAS [1]

 

Carbon source

Dextrose, fructose, galactose, inulin, inositol, maltose, mannitol, mannose, raffinose, salicin, sucrose and trehalose

TAS [1]

 

Energy metabolism

Chemoorganoheterotrophic

NAS

 

Terminal electron acceptor

Oxygen

NAS

MIGS-6

Habitat

Not reported

TAS [1]

MIGS-15

Biotic relationship

Free living

NAS

MIGS-14

Pathogenicity

Non-pathogenic

NAS

 

Biosafety level

1

NAS

MIGS-23.1

Isolation

Not reported

TAS [1]

MIGS-4

Geographic location

Not reported

TAS [1]

MIGS-5

Sample collection time

Not reported

TAS [1]

a)Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [27].

Genome sequencing and annotation

Genome project history

Due to its phylogenetic position in the near neighborhood of industrial relevant species of the genus Corynebacterium, C. callunae was selected for sequencing as part of a project to define production relevant loci in corynebacteria. While not being part of the GEBA project, sequencing of the type strain will nonetheless aid the GEBA effort. The genome project is deposited in the Genomes OnLine Database [28] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed at the CeBiTec. A summary of the project information is shown in Table 2.
Table 2

Genome sequencing project information

MIGS ID

Property

Term

MIGS-31

Finishing quality

Finished

MIGS-28

Libraries used

Nextera DNA Sample Prep Kit, Nextera Mate Pair Sample Prep Kit

MIGS-29

Sequencing platforms

Illumina MiSeq

MIGS-31.2

Sequencing coverage

99.51×

MIGS-30

Assemblers

Newbler version 2.8

MIGS-32

Gene calling method

GeneMark, Glimmer

 

Locus Tag

H924

 

Genbank ID

CP004354, CP004355, CP004356

 

GenBank Date of Release

March 6, 2013

 

GOLD ID

Gc0042965

 

BIOPROJECT ID

190670

 

Project relevance

Industrial, GEBA

MIGS-13

Source material identifier

DSM 20147

Growth conditions and DNA isolation

C. callunae DSM 20147T was grown aerobically in CASO bouillon (Carl Roth GmbH, Karlsruhe, Germany) at 30°C. DNA was isolated from ~ 108 cells using the protocol described by Tauch et al. [29].

Genome sequencing and assembly

Two libraries were prepared: a WGS library using the Illumina-Compatible Nextera DNA Sample Prep Kit (Epicentre, WI, U.S.A) and a 6 k MatePair library using the Nextera Mate Pair Sample Preparation Kit, both according to the manufacturer's protocol. Both libraries were sequenced in a 2× 250 bp paired read run on the MiSeq platform, yielding 1,747,266 total reads, providing 99.51× coverage of the genome. Reads were assembled using the Newbler assembler v2.8 (Roche). The initial Newbler assembly consisted of 29 contigs in four scaffolds. Analysis of the four scaffolds revealed two to be an extrachromosomal element (plasmid pCC1 and pCC2), one to make up the chromosome and the remaining one containing the seven copies of the RRN operon.

The Phred/Phrap/Consed software package [3033] was used for sequence assembly and quality assessment in the subsequent finishing process, gaps between contigs were closed by manual editing in Consed (for repetitive elements).

Genome annotation

Gene prediction and annotation were done using the PGAP pipeline [34]. Genes were identified using GeneMark [35], GLIMMER [36], and Prodigal [37]. For annotation, BLAST searches against the NCBI Protein Clusters Database [38] are performed and the annotation is enriched by searches against the Conserved Domain Database [39] and subsequent assignment of coding sequences to COGs. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [40], Infernal [41], RNAMMer [42], Rfam [43], TMHMM [44], and SignalP [45].

Genome properties

The genome (on the scale of 2,928,683 bp) includes one circular chromosome of 2,839,5514 bp (52.39% G + C content) and two plasmids of 4,109 bp (54.42% G + C content) and 85,023 bp (54.38% G + C content, [Figure 3]). For chromosome and plasmids, a total of 2,729 genes were predicted, 2,647 of which are protein coding genes. 2,085 (76.40%) of the protein coding genes were assigned to a putative function, the remaining were annotated as hypothetical proteins. 1,937 protein coding genes belong to 314 paralogous families in this genome corresponding to a gene content redundancy of 41.52%. The properties and the statistics of the genome are summarized in [Tables 3, 4 and 5].
Figure 3

Graphical map of the chromosome and the two plasmids pCC1 and pCC2 (not drawn to scale). From the outside in: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), GC content, GC skew.

Table 3

Summary of genome: one chromosome and two plasmids

Label

Size (Mb)

Topology

INSDC identifier

Chromosome

2.840

circular

CP004354

Plasmid pCC1

0.004

circular

CP004355

Plasmid pCC2

0.085

circular

CP004356

Table 4

Genome statistics

Attribute

Value

% of total a

Genome size (bp)

2,928,683

100.00

DNA coding (bp)

2,678,511

91.46

DNA G + C (bp)

1,536,292

52.46

DNA scaffolds

3

 

Total genes

2,729

100.00

Protein coding genes

2,647

97.00

RNA genes

82

3.00

Pseudo genes

61

2.24

Genes in internal clusters

1,937

64.05

Genes with function prediction

2,085

76.40

Genes assigned to COGs

1,748

41.52

Genes with Pfam domains

2,125

5.06

Genes with signal peptides

158

5.79

Genes with transmembrane helices

673

24.66

CRISPR repeats

0

 

a)The total is based on either the size of the genome in base pairs or the total number of total genes in the annotated genome.

Table 5

Number of genes associated with the general COG functional categories

Code

Value

% age

Description

J

148

5.59

Translation, ribosomal structure and biogenesis

A

1

0.04

RNA processing and modification

K

174

6.57

Transcription

L

192

7.25

Replication, recombination and repair

B

0

0.00

Chromatin structure and dynamics

D

20

0.76

Cell cycle control, cell division, chromosome partitioning

Y

0

0.00

Nuclear structure

V

41

1.55

Defense mechanisms

T

66

2.49

Signal transduction mechanisms

M

116

4.38

Cell wall/membrane biogenesis

N

1

0.04

Cell motility

Z

0

0.00

Cytoskeleton

W

1

0.04

Extracellular structures

U

28

1.06

Intracellular trafficking and secretion, and vesicular transport

O

76

2.87

Posttranslational modification, protein turnover, chaperones

C

115

4.34

Energy production and conversion

G

173

6.54

Carbohydrate transport and metabolism

E

244

9.22

Amino acid transport and metabolism

F

74

2.80

Nucleotide transport and metabolism

H

107

4.04

Coenzyme transport and metabolism

I

57

2.23

Lipid transport and metabolism

P

182

6.88

Inorganic ion transport and metabolism

Q

53

2.00

Secondary metabolites biosynthesis, transport and catabolism

R

315

11.90

General function prediction only

S

170

6.42

Function unknown

-

629

23.76

Not in COGs

Insights from the genome sequence

The complete genome sequence of C. callunae was already mined for biotechnological purposes to define the core genome of the C. glutamicum - C. efficiens - C. callunae subgroup to define the chassis genome for C. glutamicum[46]. Comparison of the three genomes using EDGAR [47] reveals that the core genome of this group comprises just 1,873 genes and the number of genes that are found only in C. callunae is also relatively small (366), especially when compared to number of singletons found in the other two (926 and 773 in C. glutamicum and C. efficiens, respectively; Figure 4). As C. callunae was shown to produce l-glutamate in an amount comparable to C. glutamicum, C. callunae might be considered as a potential candidate for future genome reduction efforts since the chromosome is already considerably smaller than that of C. glutamicum and C. efficiens (2.84 Mbp versus 3.21 Mbp and 3.15 Mbp, respectively). This future approach is aided by the observation that many of the singletons are clustered in just three regions (I: H924_2045-H924_02230, 37 genes, 25.2 kbp; II: H924_03630-H924_03880, 50 genes 52.5 kbp; III: H924_07070-H924_07380, 61 genes, 48.2 kbp) which constitutes ~ 4.4% of the genome size. As at least region II and region III are likely prophages, loss of these regions should be neutral or even beneficial, as demonstrated for C. glutamicum[48].
Figure 4

Venn diagram depicting the number of genes shared between C. callunae , C. glutamicum , and C. efficiens . EDGAR [47] was used to determine the core genomes shared between respectively singletons unique to the three species.

One central prerequisite for future rational strain development is the genetic accessibility of the prospective strain. Knowledge of the complete genome sequence of C. callunae helps to overcome at least two of the main obstacles: the construction of plasmids usable as vectors and removal of elements that hinder DNA transfer. For the former, the knowledge of the sequences of the two plasmids pCC1 and pCC2 allows use of plasmid-tagging approaches via a counter-selectable marker [49] to cure them, should conventional approaches like heat-shock curing fail. Once cured, the sequence of the plasmids help to identify the minimal gene set necessary for replication to build shuttle vectors, as demonstrated for pCC1 [50]. For the latter, the genome sequence helps to identify restriction-modification systems. A preliminary analysis revealed the presence of at least 4 such systems, one of which is located in the potential prophage region II. Removal of such systems has been shown to significantly enhance the stability of foreign DNA introduced and thus facilitating genetic engineering approaches [48].

Conclusion

The complete genome sequence of C. callunae is the third genome sequence of the C. glutamicum - C. deserti - C. efficiens - C. callunae subgroup of L-glutamic acid producing corynebacteria within the genus Corynebacterium. Knowledge of the complete genome sequence has already contributed to identify the core genome of this group. With a size of 2.84 Mbp and an a total of 2,647 protein coding genes, the genome of C. callunae is by far the smallest within this group. Therefore, this bacterium might be an ideal choice for future development of a platform strain as the otherwise high degree of similarity of its genome content to the well studied C. glutamicum would allow an easy transfer of knowledge to the new host. Furthermore, knowledge of the complete genome sequence also facilitates the identification of possible targets to improve the accessibility to genetic engineering (like restriction-modification systems) and to enhance genome stability (like phages and transposases).

Authors contributions

MP prepared and wrote the manuscript, AA performed library preparation and sequencing, HB and KN performed electron microscopy, JK coordinated the study, and CR assembled and analyzed the genome sequence.

Abbreviations

CeBiTec: 

Center for Biotechnology

GEBA: 

Genomic Encyclopedia of Bacteria and Archaea.

Declarations

Acknowledgements

Christian Rückert acknowledges funding through a grant by the Federal Ministry for Education and Research (0316017A) within the BioIndustry2021 initiative. We acknowledge support for the Article Processing Charge by the Deutsche Forschungsgemeinschaft and the Open Access Publication Funds of Bielefeld University Library.

Authors’ Affiliations

(1)
Technology Platform Genomics, CeBiTec, Bielefeld University
(2)
Proteome and Metabolome Research, Bielefeld University

References

  1. Lee WH, Good RC: Amino Acid Synthesis. In Book Amino Acid Synthesis (Editor ed.^eds.). City: International Minerals & Chemical Corporation; 1963:1–14.Google Scholar
  2. Wu C-Y, Zhuang L, Zhou S-G, Li F-B, He J: Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 2011, 61:882–887. 10.1099/ijs.0.020909-0View ArticlePubMedGoogle Scholar
  3. Akasaka H, Akimov VN, Anderson RC, Ariskina EV, Austin B, Behrendt U, Benno Y, Benson DR, Bernard KA, Berry AM, Biavati B, Buczolits S, Busse H-J, Butler WR, Carro L, Cavaletti L, Chen W-F, Collins MD, Costa MSd, Cui X-L, Denner EBM, Dewhirst FE, Donadio S, Dorofeeva LV, Euzéby JP, Evtushenko LI, Fernández-Garayzábal JF, Franco C, Funke G, Garrity GM: The Actinobacteria. 2nd edition. New York: Springer Verlag; 2012.Google Scholar
  4. Aravena-Román M, Spröer C, Siering C, Inglis T, Schumann P, Yassin AF: Corynebacterium aquatimens sp. nov., a lipophilic Corynebacterium isolated from blood cultures of a patient with bacteremia. Syst Appl Microbiol 2012, 35:380–384. 10.1016/j.syapm.2012.06.008View ArticlePubMedGoogle Scholar
  5. Validation List No. 148: List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012, 62:2549–2554.View ArticleGoogle Scholar
  6. Zhou Z, Yuan M, Tang R, Chen M, Lin M, Zhang W: Corynebacterium deserti sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2012, 62:791–794. 10.1099/ijs.0.030429-0View ArticlePubMedGoogle Scholar
  7. Frischmann A, Knoll A, Hilbert F, Zasada AA, Kämpfer P, Busse H-J: Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 2012, 62:2194–2200. 10.1099/ijs.0.036061-0View ArticlePubMedGoogle Scholar
  8. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A: Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013, 63:4495–4501. 10.1099/ijs.0.050757-0View ArticlePubMedGoogle Scholar
  9. Shin N-R, Jung M-J, Kim M-S, Roh SW, Nam Y-D, Bae J-W: Corynebacterium nuruki sp. nov., isolated from an alcohol fermentation starter. Int J Syst Evol Microbiol 2011, 61:2430–2434. 10.1099/ijs.0.027763-0View ArticlePubMedGoogle Scholar
  10. Hoyles L, Ortman K, Cardew S, Foster G, Rogerson F, Falsen E: Corynebacterium uterequi sp. nov., a non-lipophilic bacterium isolated from urogenital samples from horses. Vet Microbiol 2013, 165:469–474. 10.1016/j.vetmic.2013.03.025View ArticlePubMedGoogle Scholar
  11. Oren A, Garrity GM: List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2013, 63:3931–3934.View ArticleGoogle Scholar
  12. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009, 37:D141-D145. 10.1093/nar/gkn879View ArticlePubMed CentralPubMedGoogle Scholar
  13. Bruno WJ, Socci ND, Halpern AL: Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 2000, 17:189–197. 10.1093/oxfordjournals.molbev.a026231View ArticlePubMedGoogle Scholar
  14. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM: The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 2007, 35:D169-D172. 10.1093/nar/gkl889View ArticlePubMed CentralPubMedGoogle Scholar
  15. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, Ashburner M, Axelrod N, Baldauf S, Ballard S, Boore J, Cochrane G, Cole J, Dawyndt P, De Vos P, DePamphilis C, Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Glockner FO, Goldstein P, Guralnick R, Haft D, Hancock D: The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008, 26:541–547. 10.1038/nbt1360View ArticlePubMed CentralPubMedGoogle Scholar
  16. Woese CR, Kandler O, Wheelis ML: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 1990, 87:4576–4579. 10.1073/pnas.87.12.4576View ArticlePubMed CentralPubMedGoogle Scholar
  17. Garrity GM, Holt JG: The Road Map to the Manual. In Bergey´s Manual of Systematic Bacteriology. Volume 1. 2nd edition. Edited by: Garrity GM, Boone DR, Castenholz RW. New York: Springer; 2001:119–169.View ArticleGoogle Scholar
  18. Stackebrandt E, Rainey FA, Ward-Rainey NL: Proposal for a New hierarchic classification system, actinobacteria classis nov. Int J Syst Bacteriol 1997, 47:479–491. 10.1099/00207713-47-2-479View ArticleGoogle Scholar
  19. Euzéby JP, Tindall BJ: Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Request for an opinion. Int J Syst Evol Microbiol 2001, 51:725–727.PubMedGoogle Scholar
  20. Zhi XY, Li WJ, Stackebrandt E: An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009, 59:589–608. 10.1099/ijs.0.65780-0View ArticlePubMedGoogle Scholar
  21. Buchanan RE: Studies in the nomenclature and classification of the bacteria: II. The primary subdivisions of the schizomycetes. J Bacteriol 1917, 2:155–164.PubMed CentralPubMedGoogle Scholar
  22. Skerman VBD, McGowan V, Sneath PHA: Approved lists of bacterial names. Int J Syst Bacteriol 1980, 30:225–420. 10.1099/00207713-30-1-225View ArticleGoogle Scholar
  23. Lehmann KB, Neumann RO: Lehmann's Medizin, Handatlanten. X Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik. 4th edition. München: J.F. Lehmann; 1907.Google Scholar
  24. Bernard KA, Wiebe D, Burdz T, Reimer A, Ng B, Singh C, Schindle S, Pacheco AL: Assignment of Brevibacterium stationis (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium , as Corynebacterium stationis comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalinize citrate. Int J Syst Evol Microbiol 2010, 60:874–879. 10.1099/ijs.0.012641-0View ArticlePubMedGoogle Scholar
  25. Lehmann KB, Neumann RO: Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik. München: J.F. Lehmanns Verlag; 1896.Google Scholar
  26. Yamada K, Komagata K: Taxonomic studies on coryneform bacteria. V. Classification of coryneform bacteria. J Gen Appl Microbiol 1972, 18:417–431. 10.2323/jgam.18.417View ArticleGoogle Scholar
  27. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25:25–29. 10.1038/75556View ArticlePubMed CentralPubMedGoogle Scholar
  28. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC: The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2009, 38:D346-D354.View ArticlePubMed CentralPubMedGoogle Scholar
  29. Tauch A, Kassing F, Kalinowski J, Pühler A: The erythromycin resistance gene of the Corynebacterium xerosis R-plasmid pTP10 also carrying chloramphenicol, kanamycin, and tetracycline resistances is capable of transposition in Corynebacterium glutamicum . Plasmid 1995, 33:168–179. 10.1006/plas.1995.1018View ArticlePubMedGoogle Scholar
  30. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998, 8:186–194.View ArticlePubMedGoogle Scholar
  31. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8:175–185. 10.1101/gr.8.3.175View ArticlePubMedGoogle Scholar
  32. Gordon D: Viewing and editing assembled sequences using Consed. Curr Protoc Bioinform 2003,11(2):1–43.Google Scholar
  33. Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res 1998, 8:195–202. 10.1101/gr.8.3.195View ArticlePubMedGoogle Scholar
  34. Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP). [http://www.ncbi.nlm.nih.gov/books/NBK174280/]
  35. Borodovsky M, Mills R, Besemer J, Lomsadze A: Prokaryotic gene prediction using GeneMark and GeneMark.hmm. Curr Protoc Bioinform 2003,4(5):1–16.Google Scholar
  36. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999, 27:4636–4641. 10.1093/nar/27.23.4636View ArticlePubMed CentralPubMedGoogle Scholar
  37. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 2010, 11:119. 10.1186/1471-2105-11-119View ArticleGoogle Scholar
  38. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, Fedorov B, Kiryutin B, O'Neill K, Resch W, Resenchuk S, Schafer S, Tolstoy I, Tatusova T: The national center for biotechnology Information's protein clusters database. Nucleic Acids Res 2009, 37:D216-D223. 10.1093/nar/gkn734View ArticlePubMed CentralPubMedGoogle Scholar
  39. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH: CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 2009, 37:D205–10. 10.1093/nar/gkn845View ArticlePubMed CentralPubMedGoogle Scholar
  40. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955–964. 10.1093/nar/25.5.0955View ArticlePubMed CentralPubMedGoogle Scholar
  41. Eddy SR: A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinform 2002, 3:18. 10.1186/1471-2105-3-18View ArticleGoogle Scholar
  42. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100–3108. 10.1093/nar/gkm160View ArticlePubMed CentralPubMedGoogle Scholar
  43. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005, 33:D121-D124.View ArticlePubMed CentralPubMedGoogle Scholar
  44. Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305:567–580. 10.1006/jmbi.2000.4315View ArticlePubMedGoogle Scholar
  45. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783–795. 10.1016/j.jmb.2004.05.028View ArticlePubMedGoogle Scholar
  46. Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Kramer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S: Chassis organism from Corynebacterium glutamicum - a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J in press. http://dx.doi.org/10.1002/biot.201400041
  47. Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A: EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 2009, 10:154. Chapter 4 10.1186/1471-2105-10-154View ArticleGoogle Scholar
  48. Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S, Frunzke J: Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 - a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol 2013, 79:6006–6015. 10.1128/AEM.01634-13View ArticlePubMed CentralPubMedGoogle Scholar
  49. Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W: Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans . J Bacteriol 1992, 174:5462–5465.PubMed CentralPubMedGoogle Scholar
  50. Venkova-Canova T, Pátek M, Nešvera J: Characterization of the cryptic plasmid pCC1 from Corynebacterium callunae and its use for vector construction. Plasmid 2004, 51:54–60. 10.1016/j.plasmid.2003.09.002View ArticlePubMedGoogle Scholar

Copyright

© Persicke et al.; licensee BioMed Central. 2015

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.