Open Access

High-quality permanent draft genome sequence of Rhizobium sullae strain WSM1592; a Hedysarum coronarium microsymbiont from Sassari, Italy

  • Ron Yates1, 2,
  • John Howieson2,
  • Sofie E. De Meyer2,
  • Rui Tian2,
  • Rekha Seshadri3,
  • Amrita Pati3,
  • Tanja Woyke3,
  • Victor Markowitz4,
  • Natalia Ivanova3,
  • Nikos Kyrpides3, 5,
  • Angelo Loi1,
  • Brad Nutt1,
  • Giovanni Garau6,
  • Leonardo Sulas7 and
  • Wayne Reeve2Email author
Standards in Genomic Sciences201510:44

https://doi.org/10.1186/s40793-015-0020-2

Received: 9 December 2014

Accepted: 19 May 2015

Published: 24 July 2015

Abstract

Rhizobium sullae strain WSM1592 is an aerobic, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule formed on the short-lived perennial legume Hedysarum coronarium (also known as Sulla coronaria or Sulla). WSM1592 was isolated from a nodule recovered from H. coronarium roots located in Ottava, bordering Sassari, Sardinia in 1995. WSM1592 is highly effective at fixing nitrogen with H. coronarium, and is currently the commercial Sulla inoculant strain in Australia. Here we describe the features of R. sullae strain WSM1592, together with genome sequence information and its annotation. The 7,530,820 bp high-quality permanent draft genome is arranged into 118 scaffolds of 118 contigs containing 7.453 protein-coding genes and 73 RNA-only encoding genes. This rhizobial genome is sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Keywords

Root-nodule bacteriaNitrogen fixationRhizobia Alphaproteobacteria GEBA-RNB

Introduction

The accessibility and supply of nitrogen fertilizer is an ever-increasing challenge that world agriculture faces [1]. Despite the fact the Earth’s atmosphere consists of approximately 78 % dinitrogen, it is in a form that must be converted before it can be utilised by plants [2]. Conversion of N2 can be achieved by the chemical synthesis of natural gas but these methods can be considered unsustainable because of the use of exhaustible and costly fossil fuel resources [3]. In addition, the manufacturing process not only increases the greenhouse gas emissions but also field N fertiliser application have been directly linked to contaminating and leading to detrimental effects in ecosystems and waterways. Alternatively, a more sustainable and environmentally friendly process of acquiring N is through the biological process of N fixation by diazotrophs [2]. Most biological fixation in world agriculture is provided from the process of symbiotic nitrogen fixation, which occurs following the successful formation of an effective symbiosis by leguminous plants and bacterial microsymbionts [4].

The productive efficiencies of SNF in agricultural areas rely on considerable efforts by researchers and producers in matching suitable legume hosts with their compatible microsymbionts [5]. Some agricultural areas farm with indigenous legumes, while others embark on introducing exotic legumes and their compatible microsymbionts from different geographical locations that are edaphically and climatically suited to their own [4]. In Australia for instance, selection programs have enabled the domestication of new Mediterranean legume species and their microsymbionts [6]. One such grazing legume species commercially introduced into Australian and New Zealand agriculture includes the Papilionoid legume Hedysarum coronarium (also known as Sulla coronaria or Sulla). Sulla is a deep-rooted, short-lived perennial pasture legume that is grown throughout Mediterranean countries where it is fed green, used for silage or as hay [7]. It is noted that the microsymbionts of Sulla display a high level of specificity for nodulation and nitrogen fixation [8]. However, when effectively nodulated Sulla plants have the ability to biologically fix large amounts of nitrogen for increased paddock fertility [9].

Rhizobium sullae strain WSM1592 is the current Australian commercial inoculant for Sulla after replacing strain CC1335 in 2006. This strain has also been deposited in the Western Australian Soil Microbiology collection and is available for research. WSM1592 was isolated in 1995 from a nodule collected from a Sulla plant sampled on a roadside in calcareous loamy sand near the Ottava agriculture research farm, east of Sassari in Sardinia, Italy. The location has a Mediterranean climate with a long-term mean seasonal rainfall of 547 mm. Here we present a preliminary description of the general features for Rhizobium sullae strain WSM1592 together with its genome sequence and annotation.

Organism information

Classification and features

R. sullae strain WSM1592 is a motile, Gram-negative rod (Fig. 1 Left and Center) in the order Rhizobiales of the class Alphaproteobacteria . It is fast growing, forming colonies within 3–4 days when grown on half strength Lupin Agar (½LA) [10], tryptone-yeast extract agar (TY) [11] or a modified yeast-mannitol agar (YMA) [12] at 28 °C. Colonies on ½LA are white-opaque, slightly domed and moderately mucoid with smooth margins (Fig. 1 Right).
Fig. 1

Images of Rhizobium sullae strain WSM1592 using scanning (Left) and transmission (Center) electron microscopy and the appearance of colony morphology on solid media (Right)

Figure 2 shows the phylogenetic relationship of R. sullae strain WSM1592 in a 16S rRNA gene sequence based tree. This strain is phylogenetically the most related to Rhizobium sullae IS 123T, Rhizobium leguminosarum USDA 2370T and Rhizobium phaseoli ATCC 14482T with sequence identities to the WSM1592 16S rRNA gene sequence of 100 %, 99.84 % and 99.84 %, respectively, as determined using the EzTaxon-e server [13]. Rhizobium sullae IS 123T was isolated from a Hedysarum coronarium root nodule discovered in Southern Spain [14]. In contrast, R. leguminosarum USDA 2370T was isolated from an effective nodule of Pisum sativum and is also able to nodulate Trifolium repens and Phaseolus vulgaris [15]. R. phaseoli ATCC 14482T was originally isolated from nodules of Phaseolus vulgaris and has been shown to nodulate Trifolium repens , but not Pisum sativum [15].
Fig. 2

Phylogenetic tree highlighting the position of R. sullae strain WSM1592 (shown in blue print) relative to other type and non-type rhizobia strains using a 901 bp internal region of the 16S rRNA gene. Bradyrhizobium elkanii ATCC 49852T was used as an outgroup. All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 5.05 [33]. The tree was built using the maximum likelihood method with the General Time Reversible model. Bootstrap analysis with 500 replicates was performed to assess the support of the clusters. Type strains are indicated with a superscript T. Strains with a genome sequencing project registered in GOLD [18] have the GOLD ID mentioned after the strain number and represented in bold, otherwise the NCBI accession number is provided. Finished genomes are designated with an asterisk

Minimum Information about the Genome Sequence [16] of WSM1592 is provided in Table 1 and Additional file 1: Table S1.
Table 1

Classification and general features of R. sullae strain WSM1592 [16, 34]

MIGS ID

Property

Term

Evidence code

 

Classification

Domain Bacteria

TAS [35]

  

Phylum Proteobacteria

TAS [36, 37]

  

Class Alphaproteobacteria

TAS [38]

  

Order Rhizobiales

TAS [39]

  

Family Rhizobiaceae

TAS [40]

  

Genus Rhizobium

TAS [41]

  

Species Rhizobium sullae

TAS [14]

  

(Type) strain WSM1592

IDA

 

Gram stain

Negative

IDA

 

Cell shape

Rod

IDA

 

Motility

Motile

IDA

 

Sporulation

Non-sporulating

NAS

 

Temperature range

Not reported

 
 

Optimum temperature

28 °C

NAS

 

pH range; Optimum

Not reported

 
 

Carbon source

Not reported

 

MIGS-6

Habitat

Soil, root nodule, on host

IDA

MIGS-6.3

Salinity

Non-halophile

NAS

MIGS-22

Oxygen requirement

Aerobic

IDA

MIGS-15

Biotic relationship

Free living, symbiotic

IDA

MIGS-14

Pathogenicity

Non-pathogenic

NAS

MIGS-4

Geographic location

Sassari, Italy

IDA

MIGS-5

Soil collection date

20 May 1995

IDA

MIGS-4.1

Latitude

8.465

IDA

MIGS-4.2

Longitude

40.777

IDA

MIGS-4.4

Altitude

83 m

IDA

Evidence codes – IDA Inferred from Direct Assay; TAS Traceable Author Statement (i.e., a direct report exists in the literature); NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [42]

Symbiotaxonomy

Hedysarum coronarium is a short-lived perennial pasture legume native to the Mediterranean basin and throughout the Hedysarum genus there is a large degree of specificity in symbiotic compatibility within this region [8]. Rhizobium sullae WSM1592 nodulates (Nod+) and fixes nitrogen effectively (Fix+) with Hedysarum coronarium . However, inoculation of H. spinosissimum, H. flexuosum and H. carnosum with WSM1592 results in mostly Nod- but always Fix-.

Genome sequencing information

Genome project history

This organism was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the Genomic Encyclopedia of Bacteria and Archaea, The Root Nodulating Bacteria chapter project at the U.S. Department of Energy, Joint Genome Institute [17]. The genome project is deposited in the Genomes OnLine Database [18] and the high-quality permanent draft genome sequence in IMG [19]. Sequencing, finishing and annotation were performed by the JGI using state of the art sequencing technology [20]. A summary of the project information is shown in Table 2.
Table 2

Project information

MIGS ID

Property

Term

MIGS-31

Finishing quality

High-quality permanent draft

MIGS-28

Libraries used

Illumina Std PE (2x150bps)

MIGS-29

Sequencing platforms

Illumina HiSeq 2000

MIGS-31.2

Fold coverage

877x

MIGS-30

Assemblers

Velvet 1.1.04; Allpaths-LG r39750

MIGS-32

Gene calling methods

Prodigal 1.4

 

Locus Tag

A3C1

 

Genbank ID

ATZB00000000

 

Genbank Date of Release

December 12, 2013

 

GOLD ID

Gp0010240

 

BIOPROJECT

PRJNA165333

MIGS-13

Source Material Identifier

WSM1592

 

Project relevance

Symbiotic N2 fixation, agriculture

Growth conditions and genomic DNA preparation

R. sullae WSM1592 was cultured to mid logarithmic phase in 60 ml of TY rich media [11] on a gyratory shaker at 28 °C. DNA was isolated from the cells using a CTAB (Cetyl trimethyl ammonium bromide) bacterial genomic DNA isolation method [21].

Genome sequencing and assembly

The draft genome of R. sullae strain WSM1592 was generated at the DOE Joint Genome Institute using state of the art technology [20]. An Illumina Std shotgun library was constructed and sequenced using the Illumina HiSeq 2000 platform which generated 29,255,624 reads. All general aspects of library construction and sequencing performed at the JGI can be found at the JGI’s web site [22]. All raw Illumina sequence data was passed through DUK, a filtering program developed at JGI, which removes known Illumina sequencing and library preparation artifacts (Mingkun L, Copeland A, Han J. unpublished). Following steps were then performed for assembly: (1) filtered Illumina reads were assembled using Velvet (version 1.1.04) [23] (2) 1–3 Kbp simulated paired end reads were created from Velvet contigs using wgsim [24] (3) Illumina reads were assembled with simulated read pairs using Allpaths–LG (version r39750) [25]. Parameters for assembly steps were: 1) Velvet (velveth: 63 –shortPaired and velvetg: −very_clean yes –exportFiltered yes –min_contig_lgth 500 –scaffolding no–cov_cutoff 10) 2) wgsim (−e 0 –1 76 –2 76 –r 0 –R 0 –X 0) 3) Allpaths–LG (PrepareAllpathsInputs: PHRED_64 = 1 PLOIDY = 1 FRAG_COVERAGE = 125 JUMP_COVERAGE = 25 LONG_JUMP_COV = 50, RunAllpathsLG: THREADS = 8 RUN = std_shredpairs TARGETS = standard VAPI_WARN_ONLY = True OVERWRITE = True). The final draft assembly contained 118 contigs in 118 scaffolds. The total size of the genome is 7.5 Mbp and the final assembly is based on 2,498,075,850 bp of Illumina data, which provides an average of 877× coverage of the genome.

Genome annotation

Genes were identified using Prodigal [26], as part of the DOE-JGI genome annotation pipeline [27, 28]. The predicted CDSs were translated and used to search the National Centre for Biotechnology Information non-redundant database, UniProt, TIGRFam, Pfam, KEGG, COG, and InterPro databases. The tRNAScanSE tool [29] was used to find tRNA genes, whereas ribosomal RNA genes were found by searches against models of the ribosomal RNA genes built from SILVA [30]. Other non–coding RNAs such as the RNA components of the protein secretion complex and the RNase P were identified by searching the genome for the corresponding Rfam profiles using INFERNAL [31]. Additional gene prediction analysis and manual functional annotation was performed within the Integrated Microbial Genomes-Expert Review system [32] developed by the Joint Genome Institute, Walnut Creek, CA, USA.

Genome properties

The genome is 7,530,820 nucleotides 59.87 % GC content (Table 3 and comprised of 118 scaffolds of 118 contigs. From a total of 7,526 genes, 7,453 were protein encoding and 73 RNA only encoding genes. The majority of genes (78.42 %) were assigned a putative function whilst the remaining genes were annotated as hypothetical. The distribution of genes into COG functional categories is presented in Table 4.
Table 3

Genome statistics

Attribute

Value

% of Total

Genome size (bp)

7,530,820

100.00

DNA coding (bp)

6,571,312

87.26

DNA G + C (bp)

4,508,646

59.87

DNA scaffolds

118

 

Total genes

7,526

100.00

Protein coding genes

7,453

99.03

RNA genes

73

0.97

Pseudo genes

0

0

Genes in internal clusters

538

7.15

Genes with function prediction

5,902

78.42

Genes assigned to COGs

5,148

68.40

Genes with Pfam domains

6,174

82.04

Genes with signal peptides

659

8.76

Genes with transmembrane helices

1,699

22.58

CRISPR repeats

0

0

Table 4

Number of genes associated with the general COG functional categories

Code

Value

% age

COG Category

J

186

3.25

Translation, ribosomal structure and biogenesis

A

0

0.00

RNA processing and modification

K

554

9.67

Transcription

L

158

2.76

Replication, recombination and repair

B

2

0.03

Chromatin structure and dynamics

D

36

0.63

Cell cycle control, Cell division, chromosome partitioning

V

65

1.13

Defense mechanisms

T

211

3.68

Signal transduction mechanisms

M

293

5.11

Cell wall/membrane/envelope biogenesis

N

68

1.19

Cell motility

U

112

1.95

Intracellular trafficking, secretion, and vesicular transport

O

167

2.91

Posttranslational modification, protein turnover, chaperones

C

327

5.71

Energy production and conversion

G

614

10.71

Carbohydrate transport and metabolism

E

684

11.94

Amino acid transport and metabolism

F

107

1.87

Nucleotide transport and metabolism

H

174

3.04

Coenzyme transport and metabolism

I

196

3.42

Lipid transport and metabolism

P

318

5.55

Inorganic ion transport and metabolism

Q

138

2.41

Secondary metabolite biosynthesis, transport and catabolism

R

743

12.96

General function prediction only

S

578

10.09

Function unknown

-

2378

31.60

Not in COGS

The total is based on the total number of protein coding genes in the genome

Conclusions

Rhizobium sullae WSM1592 was isolated from a root nodule of Hedysarum coronarium (also known as Sulla coronaria ). Phylogenetic analysis revealed that WSM1592 is the most closely related to Hedysarum coronarium IS 123T, which was also isolated from Hedysarum coronarium growing in Southern Spain. The genome of WSM1592 is the first to be described for a strain of Rhizobium sullae and is 7.5 Mbp, with a GC content of 59.87 %. As expected this genome contains the nitrogenase-RXN MetaCyc pathway characterized by the multiprotein nitrogenase complex and has been shown to fix effectively with Hedysarum coronarium . The genome attributes of WSM1592 will be important for the characterisation of the genetic determinants required for the establishment of an effective symbiosis with Hedysarum .

Abbreviations

GEBA-RNB: 

Genomic Encyclopedia of Bacteria and ArchaeaRoot Nodule Bacteria

JGI: 

Joint Genome Institute

TY: 

Trypton Yeast

CTAB: 

Cetyl trimethyl ammonium bromide

WSM: 

Western Australian Soil Microbiology

SNF: 

Symbiotic Nitrogen Fixation

Declarations

Acknowledgements

This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.

Authors’ Affiliations

(1)
Department of Agriculture and Food
(2)
Centre for Rhizobium Studies, Murdoch University
(3)
DOE Joint Genome Institute
(4)
Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory
(5)
Department of Biological Sciences, Faculty of Science, King Abdulaziz University
(6)
Department of Agriculture, University of Sassari
(7)
Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR)

References

  1. Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil. 2008;311:1–18.View ArticleGoogle Scholar
  2. Sprent JI. Legume nodulation: A global perspective. Oxford, U.K: Wiley-Blackwell; 2009.View ArticleGoogle Scholar
  3. Vance CP. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 2001;127:390–7.PubMed CentralPubMedView ArticleGoogle Scholar
  4. Howieson JG, Yates RJ, Foster K, Real D, Besier B. Prospects for the future use of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE, editors. Leguminous nitrogen-fixing symbioses. London, UK: Elsevier; 2008. p. 363–94.Google Scholar
  5. Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero E. Advances in Rhizobium research. Crit Rev Plant Sci. 2002;21:323–78.View ArticleGoogle Scholar
  6. Howieson JG, Loi A, Carr SJ. Biserrula pelecinus L. - a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. Aust J Agric Res. 1995;46:997–1009.View ArticleGoogle Scholar
  7. Foote A. Local cultivar adaptation of Mediterranean Sulla. N Z J Exp Agric. 1988;153:25–7.Google Scholar
  8. Kishinevsky BD, Nandasena KG, Yates RJ, Nemas C, Howieson JG. Phenotypic and genetic diversity among rhizobia isolated from three Hedysarum species: H. spinosissimum, H. coronarium and H. flexuosum. Plant Soil. 2003;251:143–53.View ArticleGoogle Scholar
  9. Sulas L, Seddaiu G, Muresu R, Roggero PP. Nitrogen fixation of Sulla under mediterranean conditions. Agron J. 2009;101:1470–8.View ArticleGoogle Scholar
  10. Howieson JG, Ewing MA, D‘antuono MF. Selection for acid tolerance in Rhizobium meliloti. Plant Soil. 1988;105:179–88.View ArticleGoogle Scholar
  11. Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974;84:188–98.PubMedView ArticleGoogle Scholar
  12. Terpolilli JJ. Why are the symbioses between some genotypes of Sinorhizobium and Medicago suboptimal for N2 fixation? PhD thesis. Murdoch University: Microbiology; 2009.Google Scholar
  13. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62:716–21.PubMedView ArticleGoogle Scholar
  14. Squartini A, Struffi P, Döring H, Selenska-Pobell S, Tola E, Giacomini A, et al. Rhizobium sullae sp. nov. (formerly ’Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium. Int J Syst Evol Microbiol. 2002;52:1267–76.PubMedView ArticleGoogle Scholar
  15. Ramirez-Bahena MH, Garcia-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, et al. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889(AL), Rhizobium phaseoli Dangeard 1926(AL) and Rhizobium trifolii Dangeard 1926AL. R-trifolii is a later synonym of R-leguminosarum. Reclassification of the strain R-leguminosarum DSM 30132 (= NCIMB 11478) as Rhizobium pisi sp nov. Int J Syst Evol Microbiol. 2008;58:2484–90.PubMedView ArticleGoogle Scholar
  16. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. Towards a richer description of our complete collection of genomes and metagenomes “Minimum Information about a Genome Sequence ” (MIGS) specification. Nat Biotechnol. 2008;26:541–7.PubMed CentralPubMedView ArticleGoogle Scholar
  17. Chen IM, Markowitz VM, Chu K, Anderson I, Mavromatis K, Kyrpides NC, et al. Improving microbial genome annotations in an integrated database context. PLoS One. 2013;8:e54859.PubMed CentralPubMedView ArticleGoogle Scholar
  18. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci. 2009;1:63–7.PubMed CentralPubMedView ArticleGoogle Scholar
  19. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.PubMed CentralPubMedView ArticleGoogle Scholar
  20. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.PubMed CentralPubMedView ArticleGoogle Scholar
  21. INFERNAL. Inference of RNA alignments [ http://infernal.janelia.org]Google Scholar
  22. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009;25:2271–8.PubMedView ArticleGoogle Scholar
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.PubMed CentralPubMedView ArticleGoogle Scholar
  24. Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM, et al. The genomic standards consortium. PLoS Biol. 2011;9:e1001088.PubMed CentralPubMedView ArticleGoogle Scholar
  25. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.PubMed CentralPubMedView ArticleGoogle Scholar
  26. Chen WX, Wang ET, Kuykendall LD. The Proteobacteria. New York: Springer - Verlag; 2005.Google Scholar
  27. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2005, 55:2235-2238.Google Scholar
  28. Garrity GM, Bell JA, Lilburn T, Class I. Alphaproteobacteria. In: Garrity GM, Brenner DJ, Kreig NR, Staley JT, editors. Bergey‘s manual of systematic bacteriology. Secondth ed. New York: Springer - Verlag; 2005.Google Scholar
  29. Kuykendall LD: Order VI. Rhizobiales. In: Garrity GM, Brenner DJ, Kreig NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology. Secondth ed. New York: Springer - Verlag; 2005. p. 324.Google Scholar
  30. Kuykendall LD: Family I. Rhizobiaceae. In: Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s manual of systematic bacteriology, vol. 2. 2nd ed. New York: Springer; 2005. p. 324–58. part C.Google Scholar
  31. Kuykendall LD, Young JM, Martínez Romero E, Kerr A, Sawada H. Genus I. Rhizobium. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. 2. Second ed. New York: Springer - Verlag; 2005.Google Scholar
  32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–9.PubMed CentralPubMedView ArticleGoogle Scholar
  33. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed CentralPubMedView ArticleGoogle Scholar
  34. Reeve W, Ardley J, Tian R, Eshraghi L, Yoon J, Ngamwisetkun P, et al. A genomic encyclopedia of the root nodule bacteria: Assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci. 2015;10:14.PubMed CentralPubMedView ArticleGoogle Scholar
  35. Reddy TB, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC: The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 2014.Google Scholar
  36. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Pillay M, et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res. 2014;42:D560–7.PubMed CentralPubMedView ArticleGoogle Scholar
  37. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, et al. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. PLoS One. 2012;7:e48837.PubMed CentralPubMedView ArticleGoogle Scholar
  38. CTAB DNA extraction protocol [http://jgi.doe.gov/collaborate-with-jgi/pmo-overview/protocols-sample-preparation-information/]
  39. JGI Website [http://www.jgi.doe.gov]
  40. Zerbino D, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.PubMed CentralPubMedView ArticleGoogle Scholar
  41. wgsim [https://github.com/lh3/wgsim]
  42. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108:1513–8.PubMed CentralPubMedView ArticleGoogle Scholar

Copyright

© Yates et al. 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.